These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 864123)

  • 41. Enantiomeric specificity at the deacylation process of tryptic catalysis.
    Tanizawa K; Yamada H; Kanaoka Y
    Biochim Biophys Acta; 1987 Nov; 916(2):205-12. PubMed ID: 3676332
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of latent properties of trypsin. Acyl trypsins derived from enantiomeric pairs of "inverse substrates".
    Fujioka T; Tanizawa K; Kanaoka Y
    J Biochem; 1981 Feb; 89(2):637-43. PubMed ID: 7240132
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The conformation of the lysyl side chain of substrates at the active center of trypsin.
    Mizusaki K; Sugahara Y; Tsunematsu H; Makisumi S
    J Biochem; 1986 Jul; 100(1):21-5. PubMed ID: 3093470
    [TBL] [Abstract][Full Text] [Related]  

  • 44. New approaches to peptide synthesis with the help of trypsin.
    Mitin YuV ; Zapevalova NP; Gorbunova EYu
    Biomed Biochim Acta; 1991; 50(10-11):S74-9. PubMed ID: 1820064
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Effect of temperature on the hydrolysis of some synthetic substrates by thrombin and trypsin].
    Kibirev VK
    Biokhimiia; 1981 Oct; 46(10):1799-806. PubMed ID: 7306600
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The two alpha 2-macroglobulin-bound trypsin molecules have different affinities for the basic pancreatic trypsin inhibitor.
    Tourbez M; Dimicoli JL; Pochon F; Bieth JG
    Biochim Biophys Acta; 1984 Aug; 789(1):74-9. PubMed ID: 6205695
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Proteolytic inactivation of human leukocyte elastase.
    Stein RL; Williams JC
    Experientia; 1985 May; 41(5):638-40. PubMed ID: 3846535
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanism of hydrolysis by serine proteases: direct determination of the pKa's of aspartyl-102 and aspartyl-194 in bovine trypsin using difference infrared spectroscopy.
    Koeppe RE; Stroud RM
    Biochemistry; 1976 Aug; 15(16):3450-8. PubMed ID: 986162
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protease activity in gut of Daphnia magna: evidence for trypsin and chymotrypsin enzymes.
    von Elert E; Agrawal MK; Gebauer C; Jaensch H; Bauer U; Zitt A
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Mar; 137(3):287-96. PubMed ID: 15050516
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reaction of nerve growth factor gamma and 7S nerve growth factor complex with human and murine alpha 2-macroglobulin.
    Wolf BB; Vasudevan J; Gonias SL
    Biochemistry; 1993 Feb; 32(7):1875-82. PubMed ID: 7679924
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydrogen exchange kinetics changes upon formation of the soybean trypsin inhibitor-trypsin complex.
    Woodward CK; Ellis LM
    Biochemistry; 1975 Jul; 14(15):3419-23. PubMed ID: 238590
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Trypsin binding activity of alpha 2-macroglobulin in cystic fibrosis and other lung diseases.
    Schidlow DV; Kueppers F
    Am Rev Respir Dis; 1980 Jan; 121(1):31-7. PubMed ID: 6153257
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fairly marked enantioselectivity for the hydrolysis of amino acid esters by chemically modified enzymes.
    Yano Y; Shimada K; Okai J; Goto K; Matsumoto Y; Ueoka R
    J Org Chem; 2003 Feb; 68(4):1314-8. PubMed ID: 12585870
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interpretation of rate profiles of the pH-dependent trypsin- and alpha-chymotrypsin-catalyzed hydrolysis of esters with a free alpha-amino group.
    del Castillo LM; Nieto Z; Arce E; Inei-Shizukawa G; Cruz MT; Castañeda-Agulló M
    Biochim Biophys Acta; 1971 May; 235(2):358-69. PubMed ID: 5317640
    [No Abstract]   [Full Text] [Related]  

  • 55. Detection of microbial trypsin-like enzymes by use of an agar gel.
    Pederson ED; Lamberts BL
    Microbios; 1990; 63(256-257):165-71. PubMed ID: 2172751
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enzymatic peptide synthesis with p-guanidinophenyl and p-(guanidinomethyl)phenyl esters as acyl donors.
    Sekizaki H; Itoh K; Toyota E; Tanizawa K
    Chem Pharm Bull (Tokyo); 1998 May; 46(5):846-9. PubMed ID: 9621419
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Competitive parabolic inhibition of bovine trypsin by bis-benzamidines.
    Junqueira RG; Silva E; Mares-Guia M
    Braz J Med Biol Res; 1992; 25(9):873-87. PubMed ID: 1342833
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Investigation of the substrate-binding site of trypsin by the aid of tripeptidyl-p-nitroanilide substrates.
    Pozsgay M; Szabó G; Bajusz S; Simonsson R; Gáspár R; Elödi P
    Eur J Biochem; 1981 Apr; 115(3):497-502. PubMed ID: 7238517
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Atlantic cod trypsin-catalyzed peptide synthesis with inverse substrates as acyl donor components.
    Fuchise T; Kishimura H; Yang ZH; Kojoma M; Toyota E; Sekizaki H
    Chem Pharm Bull (Tokyo); 2010 Apr; 58(4):484-7. PubMed ID: 20410629
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Isothermal titration calorimetry determination of individual rate constants of trypsin catalytic activity.
    Aguirre C; Condado-Morales I; Olguin LF; Costas M
    Anal Biochem; 2015 Jun; 479():18-27. PubMed ID: 25823683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.