These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 8641437)
1. Wild type but not deltaF508 CFTR inhibits Na+ conductance when coexpressed in Xenopus oocytes. Mall M; Hipper A; Greger R; Kunzelmann K FEBS Lett; 1996 Feb; 381(1-2):47-52. PubMed ID: 8641437 [TBL] [Abstract][Full Text] [Related]
2. Cl- transport by cystic fibrosis transmembrane conductance regulator (CFTR) contributes to the inhibition of epithelial Na+ channels (ENaCs) in Xenopus oocytes co-expressing CFTR and ENaC. Briel M; Greger R; Kunzelmann K J Physiol; 1998 May; 508 ( Pt 3)(Pt 3):825-36. PubMed ID: 9518736 [TBL] [Abstract][Full Text] [Related]
3. The cytosolic termini of the beta- and gamma-ENaC subunits are involved in the functional interactions between cystic fibrosis transmembrane conductance regulator and epithelial sodium channel. Ji HL; Chalfant ML; Jovov B; Lockhart JP; Parker SB; Fuller CM; Stanton BA; Benos DJ J Biol Chem; 2000 Sep; 275(36):27947-56. PubMed ID: 10821834 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of epithelial Na+ currents by intracellular domains of the cystic fibrosis transmembrane conductance regulator. Kunzelmann K; Kiser GL; Schreiber R; Riordan JR FEBS Lett; 1997 Jan; 400(3):341-4. PubMed ID: 9009227 [TBL] [Abstract][Full Text] [Related]
5. The cystic fibrosis transmembrane conductance regulator attenuates the endogenous Ca2+ activated Cl- conductance of Xenopus oocytes. Kunzelmann K; Mall M; Briel M; Hipper A; Nitschke R; Ricken S; Greger R Pflugers Arch; 1997 Dec; 435(1):178-81. PubMed ID: 9359918 [TBL] [Abstract][Full Text] [Related]
6. Effects of purinergic stimulation, CFTR and osmotic stress on amiloride-sensitive Na+ transport in epithelia and Xenopus oocytes. Schreiber R; König J; Sun J; Markovich D; Kunzelmann K J Membr Biol; 2003 Mar; 192(2):101-10. PubMed ID: 12682798 [TBL] [Abstract][Full Text] [Related]
7. Effects of the serine/threonine kinase SGK1 on the epithelial Na(+) channel (ENaC) and CFTR: implications for cystic fibrosis. Wagner CA; Ott M; Klingel K; Beck S; Melzig J; Friedrich B; Wild KN; Bröer S; Moschen I; Albers A; Waldegger S; Tümmler B; Egan ME; Geibel JP; Kandolf R; Lang F Cell Physiol Biochem; 2001; 11(4):209-18. PubMed ID: 11509829 [TBL] [Abstract][Full Text] [Related]
8. Regulation of epithelial sodium channels by the cystic fibrosis transmembrane conductance regulator. Ismailov II; Awayda MS; Jovov B; Berdiev BK; Fuller CM; Dedman JR; Kaetzel M; Benos DJ J Biol Chem; 1996 Mar; 271(9):4725-32. PubMed ID: 8617738 [TBL] [Abstract][Full Text] [Related]
9. Genistein improves regulatory interactions between G551D-cystic fibrosis transmembrane conductance regulator and the epithelial sodium channel in Xenopus oocytes. Suaud L; Carattino M; Kleyman TR; Rubenstein RC J Biol Chem; 2002 Dec; 277(52):50341-7. PubMed ID: 12386156 [TBL] [Abstract][Full Text] [Related]
11. Regulatory interactions of N1303K-CFTR and ENaC in Xenopus oocytes: evidence that chloride transport is not necessary for inhibition of ENaC. Suaud L; Yan W; Carattino MD; Robay A; Kleyman TR; Rubenstein RC Am J Physiol Cell Physiol; 2007 Apr; 292(4):C1553-61. PubMed ID: 17182731 [TBL] [Abstract][Full Text] [Related]
12. Genistein restores functional interactions between Delta F508-CFTR and ENaC in Xenopus oocytes. Suaud L; Li J; Jiang Q; Rubenstein RC; Kleyman TR J Biol Chem; 2002 Mar; 277(11):8928-33. PubMed ID: 11773060 [TBL] [Abstract][Full Text] [Related]
13. Downregulation of epithelial sodium channel (ENaC) by CFTR co-expressed in Xenopus oocytes is independent of Cl- conductance. Chabot H; Vives MF; Dagenais A; Grygorczyk C; Berthiaume Y; Grygorczyk R J Membr Biol; 1999 Jun; 169(3):175-88. PubMed ID: 10354464 [TBL] [Abstract][Full Text] [Related]
14. Mutations in the putative pore-forming domain of CFTR do not change anion selectivity of the cAMP activated Cl- conductance. Hipper A; Mall M; Greger R; Kunzelmann K FEBS Lett; 1995 Nov; 374(3):312-6. PubMed ID: 7589561 [TBL] [Abstract][Full Text] [Related]
15. Expression of the cystic fibrosis phenotype in a renal amphibian epithelial cell line. Ling BN; Zuckerman JB; Lin C; Harte BJ; McNulty KA; Smith PR; Gomez LM; Worrell RT; Eaton DC; Kleyman TR J Biol Chem; 1997 Jan; 272(1):594-600. PubMed ID: 8995302 [TBL] [Abstract][Full Text] [Related]
16. Chloride channel and chloride conductance regulator domains of CFTR, the cystic fibrosis transmembrane conductance regulator. Schwiebert EM; Morales MM; Devidas S; Egan ME; Guggino WB Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2674-9. PubMed ID: 9482946 [TBL] [Abstract][Full Text] [Related]
17. Lack of correlation between CFTR expression, CFTR Cl- currents, amiloride-sensitive Na+ conductance, and cystic fibrosis phenotype. Beck S; Kühr J; Schütz VV; Seydewitz HH; Brandis M; Greger R; Kunzelmann K Pediatr Pulmonol; 1999 Apr; 27(4):251-9. PubMed ID: 10230924 [TBL] [Abstract][Full Text] [Related]
18. Effect of genistein on native epithelial tissue from normal individuals and CF patients and on ion channels expressed in Xenopus oocytes. Mall M; Wissner A; Seydewitz HH; Hübner M; Kuehr J; Brandis M; Greger R; Kunzelmann K Br J Pharmacol; 2000 Aug; 130(8):1884-92. PubMed ID: 10952679 [TBL] [Abstract][Full Text] [Related]
19. Abnormal regulatory interactions of I148T-CFTR and the epithelial Na+ channel in Xenopus oocytes. Suaud L; Yan W; Rubenstein RC Am J Physiol Cell Physiol; 2007 Jan; 292(1):C603-11. PubMed ID: 16822950 [TBL] [Abstract][Full Text] [Related]
20. δβγ-ENaC is inhibited by CFTR but stimulated by cAMP in Rauh R; Hoerner C; Korbmacher C Am J Physiol Lung Cell Mol Physiol; 2017 Feb; 312(2):L277-L287. PubMed ID: 27941075 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]