These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 8642010)
1. A modified chemostat system to study the ecology of oral biofilms. Bradshaw DJ; Marsh PD; Schilling KM; Cummins D J Appl Bacteriol; 1996 Feb; 80(2):124-30. PubMed ID: 8642010 [TBL] [Abstract][Full Text] [Related]
2. Effect of oxygen, inoculum composition and flow rate on development of mixed-culture oral biofilms. Bradshaw DJ; Marsh PD; Allison C; Schilling KM Microbiology (Reading); 1996 Mar; 142 ( Pt 3)():623-629. PubMed ID: 8868437 [TBL] [Abstract][Full Text] [Related]
3. The influence of growth rate and nutrient limitation on the microbial composition and biochemical properties of a mixed culture of oral bacteria grown in a chemostat. Marsh PD; Hunter JR; Bowden GH; Hamilton IR; McKee AS; Hardie JM; Ellwood DC J Gen Microbiol; 1983 Mar; 129(3):755-70. PubMed ID: 6348208 [TBL] [Abstract][Full Text] [Related]
4. [Dynamic observation of periodontal pathogens and cariogenic bacteria in modified chemostat using confocal laser scanning microscopy]. Wang MF; Li DY; Li ZL Zhonghua Kou Qiang Yi Xue Za Zhi; 2004 Mar; 39(2):142-5. PubMed ID: 15061891 [TBL] [Abstract][Full Text] [Related]
5. Development of a steady-state oral microbial biofilm community using the constant-depth film fermenter. Kinniment SL; Wimpenny JWT; Adams D; Marsh PD Microbiology (Reading); 1996 Mar; 142 ( Pt 3)():631-638. PubMed ID: 8868438 [TBL] [Abstract][Full Text] [Related]
6. Effect of sodium fluoride on oral biofilm microbiota and enamel demineralization. Thurnheer T; Belibasakis GN Arch Oral Biol; 2018 May; 89():77-83. PubMed ID: 29482049 [TBL] [Abstract][Full Text] [Related]
7. Characterization and application of a flow system for in vitro multispecies oral biofilm formation. Blanc V; Isabal S; Sánchez MC; Llama-Palacios A; Herrera D; Sanz M; León R J Periodontal Res; 2014 Jun; 49(3):323-32. PubMed ID: 23815431 [TBL] [Abstract][Full Text] [Related]
8. Development of multi-species consortia biofilms of oral bacteria as an enamel and root caries model system. Shu M; Wong L; Miller JH; Sissons CH Arch Oral Biol; 2000 Jan; 45(1):27-40. PubMed ID: 10669090 [TBL] [Abstract][Full Text] [Related]
9. Effects of glucose and fluoride on competition and metabolism within in vitro dental bacterial communities and biofilms. Bradshaw DJ; Marsh PD; Hodgson RJ; Visser JM Caries Res; 2002; 36(2):81-6. PubMed ID: 12037363 [TBL] [Abstract][Full Text] [Related]
10. Role of Fusobacterium nucleatum and coaggregation in anaerobe survival in planktonic and biofilm oral microbial communities during aeration. Bradshaw DJ; Marsh PD; Watson GK; Allison C Infect Immun; 1998 Oct; 66(10):4729-32. PubMed ID: 9746571 [TBL] [Abstract][Full Text] [Related]
11. Uncovering complex microbiome activities via metatranscriptomics during 24 hours of oral biofilm assembly and maturation. Edlund A; Yang Y; Yooseph S; He X; Shi W; McLean JS Microbiome; 2018 Dec; 6(1):217. PubMed ID: 30522530 [TBL] [Abstract][Full Text] [Related]
12. The effect of environmental pH and fluoride from the substratum on the development of biofilms of selected oral bacteria. Li YH; Bowden GH J Dent Res; 1994 Oct; 73(10):1615-26. PubMed ID: 7929976 [TBL] [Abstract][Full Text] [Related]
13. Effect of acid stress on the physiology of biofilm cells of Streptococcus mutans. McNeill K; Hamilton IR Microbiology (Reading); 2004 Mar; 150(Pt 3):735-742. PubMed ID: 14993323 [TBL] [Abstract][Full Text] [Related]
14. A novel hydroxyapatite-binding antimicrobial peptide against oral biofilms. Yang Y; Xia L; Haapasalo M; Wei W; Zhang D; Ma J; Shen Y Clin Oral Investig; 2019 Jun; 23(6):2705-2712. PubMed ID: 30353289 [TBL] [Abstract][Full Text] [Related]
15. Regulation of urease expression of Actinomyces naeslundii in biofilms in response to pH and carbohydrate. Liy Y; Dan J; Tao H; Xuedong Z Oral Microbiol Immunol; 2008 Aug; 23(4):315-9. PubMed ID: 18582331 [TBL] [Abstract][Full Text] [Related]
17. pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence. Horev B; Klein MI; Hwang G; Li Y; Kim D; Koo H; Benoit DS ACS Nano; 2015 Mar; 9(3):2390-404. PubMed ID: 25661192 [TBL] [Abstract][Full Text] [Related]
18. Association between the cariogenicity of a dental microcosm biofilm and its red fluorescence detected by Quantitative Light-induced Fluorescence-Digital (QLF-D). Lee ES; Kang SM; Ko HY; Kwon HK; Kim BI J Dent; 2013 Dec; 41(12):1264-70. PubMed ID: 24012520 [TBL] [Abstract][Full Text] [Related]
19. Perpetuation of subgingival biofilms in an in vitro model. Shaddox LM; Alfant B; Tobler J; Walker C Mol Oral Microbiol; 2010 Feb; 25(1):81-7. PubMed ID: 20331796 [TBL] [Abstract][Full Text] [Related]
20. Antimicrobial efficacy of chlorhexidine against bacteria in biofilms at different stages of development. Shen Y; Stojicic S; Haapasalo M J Endod; 2011 May; 37(5):657-61. PubMed ID: 21496666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]