These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 8642016)

  • 41. Splicing thermotolerance maintains Pre-mRNA transcripts in the splicing pathway during severe heat shock.
    Corell RA; Gross RH
    Exp Cell Res; 1992 Oct; 202(2):233-42. PubMed ID: 1397078
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Expression, synthesis, and phosphorylation of HSP28 family during development and decay of thermotolerance in CHO plateau-phase cells.
    Lee YJ; Hou ZZ; Curetty L; Corry PM
    J Cell Physiol; 1992 Mar; 150(3):441-6. PubMed ID: 1371511
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermotolerance expression in mitotic CHO cells without increased translation of heat shock proteins.
    Borrelli MJ; Stafford DM; Karczewski LA; Rausch CM; Lee YJ; Corry PM
    J Cell Physiol; 1996 Dec; 169(3):420-8. PubMed ID: 8952691
    [TBL] [Abstract][Full Text] [Related]  

  • 44. HspA and HtpG enhance thermotolerance in the cyanobacterium, Microcystis aeruginosa NIES-298.
    Rhee JS; Ki JS; Kim BM; Hwang SJ; Choi IY; Lee JS
    J Microbiol Biotechnol; 2012 Jan; 22(1):118-25. PubMed ID: 22297228
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phosphorylation of HSP27 during development and decay of thermotolerance in Chinese hamster cells.
    Landry J; Chrétien P; Laszlo A; Lambert H
    J Cell Physiol; 1991 Apr; 147(1):93-101. PubMed ID: 2037626
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Induction of thermotolerance and heat-shock protein synthesis during nutritional deprivation.
    van Rijn J; van den Berg J; van Aken H; van Wijk R
    Int J Hyperthermia; 1992; 8(3):377-94. PubMed ID: 1607742
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermotolerance and Heat-Shock Protein Gene Expression Patterns in Bemisia tabaci (Hemiptera: Aleyrodidae) Mediterranean in Relation to Developmental Stage.
    Jiang R; Qi LD; Du YZ; Li YX
    J Econ Entomol; 2017 Oct; 110(5):2190-2198. PubMed ID: 28961720
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Listeriolysin O production and pathogenicity of non-growing Listeria monocytogenes stored at refrigeration temperature.
    Buncic S; Avery SM; Rogers AR
    Int J Food Microbiol; 1996 Aug; 31(1-3):133-47. PubMed ID: 8880303
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermotolerance is independent of induction of the full spectrum of heat shock proteins and of cell cycle blockage in the yeast Saccharomyces cerevisiae.
    Barnes CA; Johnston GC; Singer RA
    J Bacteriol; 1990 Aug; 172(8):4352-8. PubMed ID: 2198254
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermal adaptation and heat shock response of Tilapia ovary cells.
    Chen JD; Yew FH; Li GC
    J Cell Physiol; 1988 Feb; 134(2):189-99. PubMed ID: 3346335
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differential heat-shock protein synthesis and response to stress in three avirulent and virulent Listeria species.
    Morange M; Hévin B; Fauve RM
    Res Immunol; 1993; 144(9):667-77. PubMed ID: 8159869
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The antioxidant transcription factor Nrf2 contributes to the protective effect of mild thermotolerance (40°C) against heat shock-induced apoptosis.
    Glory A; Averill-Bates DA
    Free Radic Biol Med; 2016 Oct; 99():485-497. PubMed ID: 27591796
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effect of culture growth phase on induction of the heat shock response in Yersinia enterocolitica and Listeria monocytogenes.
    McMahon CM; Byrne CM; Sheridan JJ; McDowell DA; Blair IS; Hegarty T
    J Appl Microbiol; 2000 Aug; 89(2):198-206. PubMed ID: 10971751
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heat shock-induced acquisition of thermotolerance at the levels of cell survival and translation in Xenopus A6 kidney epithelial cells.
    Phang D; Joyce EM; Heikkila JJ
    Biochem Cell Biol; 1999; 77(2):141-51. PubMed ID: 10438149
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A proteomic analysis of the salt stress response of Listeria monocytogenes.
    Duché O; Trémoulet F; Namane A; Labadie J;
    FEMS Microbiol Lett; 2002 Oct; 215(2):183-8. PubMed ID: 12399033
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of the heat shock response in Enterococcus faecalis.
    Boutibonnes P; Giard JC; Hartke A; Thammavongs B; Auffray Y
    Antonie Van Leeuwenhoek; 1993; 64(1):47-55. PubMed ID: 8274003
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Translational thermotolerance in Saccharomyces cerevisiae.
    Hallberg EM; Hallberg RL
    Cell Stress Chaperones; 1996 Apr; 1(1):70-7. PubMed ID: 9222591
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of staurosporine on suppression of heat shock gene expression and thermotolerance development in HT-29 cells.
    Kim SH; Kim JH; Erdos G; Lee YJ
    Biochem Biophys Res Commun; 1993 Jun; 193(2):759-63. PubMed ID: 8512574
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis and degradation of heat shock proteins during development and decay of thermotolerance.
    Landry J; Bernier D; Chrétien P; Nicole LM; Tanguay RM; Marceau N
    Cancer Res; 1982 Jun; 42(6):2457-61. PubMed ID: 7074623
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of thermotolerance on heat-induced excess nuclear-associated proteins.
    Borrelli MJ; Stafford DM; Rausch CM; Lee YJ; Corry PM
    J Cell Physiol; 1993 Jul; 156(1):171-81. PubMed ID: 8314856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.