These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 8642116)

  • 1. Sound-power collection by the auditory periphery of the mongolian gerbil Meriones unguiculatus. II. External-ear radiation impedance and power collection.
    Ravicz ME; Rosowski JJ; Voigt HF
    J Acoust Soc Am; 1996 May; 99(5):3044-63. PubMed ID: 8642116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sound-power collection by the auditory periphery of the Mongolian gerbil Meriones unguiculatus. I: Middle-ear input impedance.
    Ravicz ME; Rosowski JJ; Voigt HF
    J Acoust Soc Am; 1992 Jul; 92(1):157-77. PubMed ID: 1512321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sound-power collection by the auditory periphery of the Mongolian gerbil Meriones unguiculatus: III. Effect of variations in middle-ear volume.
    Ravicz ME; Rosowski JJ
    J Acoust Soc Am; 1997 Apr; 101(4):2135-47. PubMed ID: 9104016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The radiation impedance of the external ear of cat: measurements and applications.
    Rosowski JJ; Carney LH; Peake WT
    J Acoust Soc Am; 1988 Nov; 84(5):1695-708. PubMed ID: 3209774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurements of the acoustic input impedance of cat ears: 10 Hz to 20 kHz.
    Lynch TJ; Peake WT; Rosowski JJ
    J Acoust Soc Am; 1994 Oct; 96(4):2184-209. PubMed ID: 7963032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial distribution of sound pressure and energy flow in the ear canals of cats.
    Stinson MR; Khanna SM
    J Acoust Soc Am; 1994 Jul; 96(1):170-80. PubMed ID: 8064020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Middle-ear velocity transfer function, cochlear input immittance, and middle-ear efficiency in chinchilla.
    Ravicz ME; Rosowski JJ
    J Acoust Soc Am; 2013 Oct; 134(4):2852-65. PubMed ID: 24116422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency characteristics of sound transmission in middle ears from Norwegian cattle, and the effect of static pressure differences across the tympanic membrane and the footplate.
    Kringlebotn M
    J Acoust Soc Am; 2000 Mar; 107(3):1442-50. PubMed ID: 10738799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of pars flaccida on sound conduction in ears of Mongolian gerbil: acoustic and anatomical measurements.
    Teoh SW; Flandermeyer DT; Rosowski JJ
    Hear Res; 1997 Apr; 106(1-2):39-65. PubMed ID: 9112106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sound pressure distribution and power flow within the gerbil ear canal from 100 Hz to 80 kHz.
    Ravicz ME; Olson ES; Rosowski JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2154-73. PubMed ID: 17902852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay.
    Puria S; Allen JB
    J Acoust Soc Am; 1998 Dec; 104(6):3463-81. PubMed ID: 9857506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of wide-band middle ear transmission in the Mongolian gerbil.
    Overstreet EH; Ruggero MA
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 1):261-70. PubMed ID: 11831800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chinchilla middle-ear admittance and sound power: high-frequency estimates and effects of inner-ear modifications.
    Ravicz ME; Rosowski JJ
    J Acoust Soc Am; 2012 Oct; 132(4):2437-54. PubMed ID: 23039439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normative Wideband Reflectance, Equivalent Admittance at the Tympanic Membrane, and Acoustic Stapedius Reflex Threshold in Adults.
    Feeney MP; Keefe DH; Hunter LL; Fitzpatrick DF; Garinis AC; Putterman DB; McMillan GP
    Ear Hear; 2017; 38(3):e142-e160. PubMed ID: 28045835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammalian ear specializations in arid habitats: structural and functional evidence from sand cat (Felis margarita).
    Huang GT; Rosowski JJ; Ravicz ME; Peake WT
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Oct; 188(9):663-81. PubMed ID: 12397438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-frequency sensitivity in a gerbilline rodent, Pachyuromys duprasi.
    Plassmann W; Kadel M
    Brain Behav Evol; 1991; 38(2-3):115-26. PubMed ID: 1742598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the chinchilla pinna and ear canal in electrophysiological measures of hearing thresholds.
    Murphy WJ; Davis RR
    J Acoust Soc Am; 1998 Apr; 103(4):1951-6. PubMed ID: 9566318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of the acoustic input immittance of the human ear.
    Rabinowitz WM
    J Acoust Soc Am; 1981 Oct; 70(4):1025-35. PubMed ID: 7288039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurements of middle-ear function in the Mongolian gerbil, a specialized mammalian ear.
    Rosowski JJ; Ravicz ME; Teoh SW; Flandermeyer D
    Audiol Neurootol; 1999; 4(3-4):129-36. PubMed ID: 10187920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pinna-based spectral cues for sound localization in cat.
    Rice JJ; May BJ; Spirou GA; Young ED
    Hear Res; 1992 Mar; 58(2):132-52. PubMed ID: 1568936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.