BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 8642593)

  • 21. Organization of DNA partners and strand exchange mechanisms during Flp site-specific recombination analyzed by difference topology, single molecule FRET and single molecule TPM.
    Ma CH; Liu YT; Savva CG; Rowley PA; Cannon B; Fan HF; Russell R; Holzenburg A; Jayaram M
    J Mol Biol; 2014 Feb; 426(4):793-815. PubMed ID: 24286749
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Suicide substrates reveal properties of the homology-dependent steps during integrative recombination of bacteriophage lambda.
    Burgin AB; Nash HA
    Curr Biol; 1995 Nov; 5(11):1312-21. PubMed ID: 8574589
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA splicing by an active site mutant of Flp recombinase. Possible catalytic cooperativity between the inactive protein and its DNA substrate.
    Serre MC; Zheng L; Jayaram M
    J Biol Chem; 1993 Jan; 268(1):455-63. PubMed ID: 8416950
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional roles of individual recombinase monomers in strand breakage and strand union during site-specific DNA recombination.
    Lee J; Jayaram M
    J Biol Chem; 1995 Sep; 270(39):23203-11. PubMed ID: 7559468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synapsis, strand scission, and strand exchange induced by the FLP recombinase: analysis with half-FRT sites.
    Amin A; Roca H; Luetke K; Sadowski PD
    Mol Cell Biol; 1991 Sep; 11(9):4497-508. PubMed ID: 1875935
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A tetramer of the Flp recombinase silences the trimers within it during resolution of a Holliday junction substrate.
    Lee J; Jayaram M
    Genes Dev; 1997 Sep; 11(18):2438-47. PubMed ID: 9308970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of single-stranded DNA in Flp-mediated strand exchange.
    Zhu XD; Sadowski PD
    J Biol Chem; 1998 Feb; 273(9):4921-7. PubMed ID: 9478936
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reactions between half- and full-FLP recombination target sites. A model system for analyzing early steps in FLP protein-mediated site-specific recombination.
    Qian XH; Inman RB; Cox MM
    J Biol Chem; 1992 Apr; 267(11):7794-805. PubMed ID: 1560013
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tests for the fractional active-site model in Flp site-specific recombination. Assembly of a functional recombination complex in half-site and full-site strand transfer.
    Chen JW; Yang SH; Jayaram M
    J Biol Chem; 1993 Jul; 268(19):14417-25. PubMed ID: 8314800
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bending-incompetent variants of Flp recombinase mediate strand transfer in half-site recombinations: role of DNA bending in recombination.
    Chen JW; Evans B; Rosenfeldt H; Jayaram M
    Gene; 1992 Sep; 119(1):37-48. PubMed ID: 1398089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Asymmetry in active complexes of FLP recombinase.
    Qian XH; Cox MM
    Genes Dev; 1995 Aug; 9(16):2053-64. PubMed ID: 7649483
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binding and cleavage of nicked substrates by site-specific recombinases XerC and XerD.
    Blakely GW; Davidson AO; Sherratt DJ
    J Mol Biol; 1997 Jan; 265(1):30-9. PubMed ID: 8995522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recombination of hybrid target sites by binary combinations of Flp variants: mutations that foster interprotomer collaboration and enlarge substrate tolerance.
    Konieczka JH; Paek A; Jayaram M; Voziyanov Y
    J Mol Biol; 2004 May; 339(2):365-78. PubMed ID: 15136039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Symmetric DNA sites are functionally asymmetric within Flp and Cre site-specific DNA recombination synapses.
    Grainge I; Pathania S; Vologodskii A; Harshey RM; Jayaram M
    J Mol Biol; 2002 Jul; 320(3):515-27. PubMed ID: 12096907
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preferential synapsis of loxP sites drives ordered strand exchange in Cre-loxP site-specific recombination.
    Ghosh K; Lau CK; Gupta K; Van Duyne GD
    Nat Chem Biol; 2005 Oct; 1(5):275-82. PubMed ID: 16408057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synaptic intermediates promoted by the FLP recombinase.
    Amin AA; Beatty LG; Sadowski PD
    J Mol Biol; 1990 Jul; 214(1):55-72. PubMed ID: 2196377
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-time single-molecule tethered particle motion analysis reveals mechanistic similarities and contrasts of Flp site-specific recombinase with Cre and λ Int.
    Fan HF; Ma CH; Jayaram M
    Nucleic Acids Res; 2013 Aug; 41(14):7031-47. PubMed ID: 23737451
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Half-site strand transfer by step-arrest mutants of yeast site-specific recombinase Flp.
    Serre MC; Jayaram M
    J Mol Biol; 1992 Jun; 225(3):643-9. PubMed ID: 1602475
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutations of the FLP recombinase gene that cause a deficiency in DNA bending and strand cleavage.
    Kulpa J; Dixon JE; Pan G; Sadowski PD
    J Biol Chem; 1993 Jan; 268(2):1101-8. PubMed ID: 8419317
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA recognition by the FLP recombinase of the yeast 2 mu plasmid. A mutational analysis of the FLP binding site.
    Senecoff JF; Rossmeissl PJ; Cox MM
    J Mol Biol; 1988 May; 201(2):405-21. PubMed ID: 3047402
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.