These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 8642615)

  • 21. Big data analysis of human mitochondrial DNA substitution models: a regression approach.
    Levinstein Hallak K; Tzur S; Rosset S
    BMC Genomics; 2018 Oct; 19(1):759. PubMed ID: 30340456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phylogenetic analysis using parsimony and likelihood methods.
    Yang Z
    J Mol Evol; 1996 Feb; 42(2):294-307. PubMed ID: 8919881
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The response of amino acid frequencies to directional mutation pressure in mitochondrial genome sequences is related to the physical properties of the amino acids and to the structure of the genetic code.
    Urbina D; Tang B; Higgs PG
    J Mol Evol; 2006 Mar; 62(3):340-61. PubMed ID: 16477524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of models for nucleotide substitution used in maximum-likelihood phylogenetic estimation.
    Yang Z; Goldman N; Friday A
    Mol Biol Evol; 1994 Mar; 11(2):316-24. PubMed ID: 8170371
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNA Sequences Are as Useful as Protein Sequences for Inferring Deep Phylogenies.
    Kapli P; Kotari I; Telford MJ; Goldman N; Yang Z
    Syst Biol; 2023 Nov; 72(5):1119-1135. PubMed ID: 37366056
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A dependent-rates model and an MCMC-based methodology for the maximum-likelihood analysis of sequences with overlapping reading frames.
    Pedersen AM; Jensen JL
    Mol Biol Evol; 2001 May; 18(5):763-76. PubMed ID: 11319261
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparative mitogenomic analysis of the potential adaptive value of Arctic charr mtDNA introgression in brook charr populations (Salvelinus fontinalis Mitchill).
    Doiron S; Bernatchez L; Blier PU
    Mol Biol Evol; 2002 Nov; 19(11):1902-9. PubMed ID: 12411599
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CodonPhyML: fast maximum likelihood phylogeny estimation under codon substitution models.
    Gil M; Zanetti MS; Zoller S; Anisimova M
    Mol Biol Evol; 2013 Jun; 30(6):1270-80. PubMed ID: 23436912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The complete mitochondrial DNA sequence of Mesostigma viride identifies this green alga as the earliest green plant divergence and predicts a highly compact mitochondrial genome in the ancestor of all green plants.
    Turmel M; Otis C; Lemieux C
    Mol Biol Evol; 2002 Jan; 19(1):24-38. PubMed ID: 11752187
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tempo and mode of mitochondrial DNA evolution in vertebrates at the amino acid sequence level: rapid evolution in warm-blooded vertebrates.
    Adachi J; Cao Y; Hasegawa M
    J Mol Evol; 1993 Mar; 36(3):270-81. PubMed ID: 8483165
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolution of nuclear- and mitochondrial-encoded subunit interaction in cytochrome c oxidase.
    Schmidt TR; Wu W; Goodman M; Grossman LI
    Mol Biol Evol; 2001 Apr; 18(4):563-9. PubMed ID: 11264408
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synonymous substitutions substantially improve evolutionary inference from highly diverged proteins.
    Seo TK; Kishino H
    Syst Biol; 2008 Jun; 57(3):367-77. PubMed ID: 18570032
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative genomics of mitochondrial DNA in members of the Drosophila melanogaster subgroup.
    Ballard JW
    J Mol Evol; 2000 Jul; 51(1):48-63. PubMed ID: 10903372
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The rate and pattern of nucleotide substitution in Drosophila mitochondrial DNA.
    Tamura K
    Mol Biol Evol; 1992 Sep; 9(5):814-25. PubMed ID: 1528108
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Maximum parsimony, substitution model, and probability phylogenetic trees.
    Weng JF; Thomas DA; Mareels I
    J Comput Biol; 2011 Jan; 18(1):67-80. PubMed ID: 20624099
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The use of logistic models for the analysis of codon frequencies of DNA sequences in terms of explanatory variables.
    Amfoh KK; Shaw RF; Bonney GE
    Biometrics; 1994 Dec; 50(4):1054-63. PubMed ID: 7786987
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptive selection of mitochondrial complex I subunits during primate radiation.
    Mishmar D; Ruiz-Pesini E; Mondragon-Palomino M; Procaccio V; Gaut B; Wallace DC
    Gene; 2006 Aug; 378():11-8. PubMed ID: 16828987
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular evolution of the hepatitis B virus genome.
    Yang Z; Lauder IJ; Lin HJ
    J Mol Evol; 1995 Nov; 41(5):587-96. PubMed ID: 7490773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterogeneity in the substitution process of amino acid sites of proteins coded for by mitochondrial DNA.
    Reeves JH
    J Mol Evol; 1992 Jul; 35(1):17-31. PubMed ID: 1518082
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling evolution at the protein level using an adjustable amino acid fitness model.
    Dimmic MW; Mindell DP; Goldstein RA
    Pac Symp Biocomput; 2000; ():18-29. PubMed ID: 10902153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.