BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 8643273)

  • 1. Dorsal cochlear nucleus blood flow during acoustic stimulation.
    Quirk WS; Goldwyn BG; Meleca RJ; Kaltenbach JA
    Otolaryngol Head Neck Surg; 1996 Apr; 114(4):613-9. PubMed ID: 8643273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in dorsal cochlear nucleus blood flow during noise exposure.
    Mandal A; Kaltenbach JA; Quirk WS
    Hear Res; 1997 Apr; 106(1-2):1-8. PubMed ID: 9112102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: a physiological model for tinnitus.
    Kaltenbach JA; Afman CE
    Hear Res; 2000 Feb; 140(1-2):165-72. PubMed ID: 10675644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cochlear vascular and electrophysiological effects in the guinea pig to 4 kHz pure tones of different durations and intensities.
    Vertes D; Axelsson A; Miller J; Lidén G
    Acta Otolaryngol; 1981; 92(1-2):15-24. PubMed ID: 7315247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of cochlear ablation on noise induced hyperactivity in the hamster dorsal cochlear nucleus: implications for the origin of noise induced tinnitus.
    Zacharek MA; Kaltenbach JA; Mathog TA; Zhang J
    Hear Res; 2002 Oct; 172(1-2):137-43. PubMed ID: 12361876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping of c-fos expression elicited by pure tones stimulation in the auditory pathways of the rat, with emphasis on the cochlear nucleus.
    Rouiller EM; Wan XS; Moret V; Liang F
    Neurosci Lett; 1992 Sep; 144(1-2):19-24. PubMed ID: 1436702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser Doppler measurements of cochlear blood flow during loud sound exposure in the guinea pig.
    Thorne PR; Nuttall AL
    Hear Res; 1987; 27(1):1-10. PubMed ID: 2953704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo optical imaging of tone-evoked activity in the dorsal cochlear nucleus with a voltage sensitive dye.
    Kaltenbach JA; Zhang JS
    J Neurosci Res; 2004 Dec; 78(6):908-17. PubMed ID: 15521061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Average spectrum of cochlear activity: a possible synchronized firing, its olivo-cochlear feedback and alterations under anesthesia.
    Cazals Y; Huang ZW
    Hear Res; 1996 Nov; 101(1-2):81-92. PubMed ID: 8951435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of frequency and intensity of sound on cochlear blood flow.
    Okamoto A; Hasegawa M; Tamura T; Homma T; Komatsuzaki A
    Acta Otolaryngol; 1992; 112(1):59-64. PubMed ID: 1575038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Representation of acoustic signals in the human cochlea in presence of a cochlear implant electrode.
    Kiefer J; Böhnke F; Adunka O; Arnold W
    Hear Res; 2006 Nov; 221(1-2):36-43. PubMed ID: 16962268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the tonotopic map of the dorsal cochlear nucleus in hamsters with hair cell loss and radial nerve bundle degeneration.
    Meleca RJ; Kaltenbach JA; Falzarano PR
    Brain Res; 1997 Mar; 750(1-2):201-13. PubMed ID: 9098546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploration of cochlear function by otoacoustic emissions: relationship to pure-tone audiometry.
    Avan P; Bonfils P; Loth D; Teyssou M; Menguy C
    Prog Brain Res; 1993; 97():67-75. PubMed ID: 8234768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in cochlear function related to acoustic stimulation of cervical vestibular evoked myogenic potential stimulation.
    Strömberg AK; Olofsson Å; Westin M; Duan M; Stenfelt S
    Hear Res; 2016 Oct; 340():43-49. PubMed ID: 26724755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Connections and frequency representation in the auditory brainstem of the mustache bat, Pteronotus parnellii.
    Zook JM; Leake PA
    J Comp Neurol; 1989 Dec; 290(2):243-61. PubMed ID: 2592612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus.
    Brozoski TJ; Bauer CA; Caspary DM
    J Neurosci; 2002 Mar; 22(6):2383-90. PubMed ID: 11896177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Contralateral Pure Tones on the Compound Action Potential in Humans: Efferent Tuning Curves.
    Najem F; Ferraro J; Chertoff M
    J Am Acad Audiol; 2016 Feb; 27(2):103-16. PubMed ID: 26905530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of experimentally induced conductive hearing loss on spectral and temporal aspects of sound transmission through the ear.
    Eric Lupo J; Koka K; Thornton JL; Tollin DJ
    Hear Res; 2011 Feb; 272(1-2):30-41. PubMed ID: 21073935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological correlates of hearing loss after cochlear implantation and electro-acoustic stimulation in a hearing-impaired Guinea pig model.
    Reiss LA; Stark G; Nguyen-Huynh AT; Spear KA; Zhang H; Tanaka C; Li H
    Hear Res; 2015 Sep; 327():163-74. PubMed ID: 26087114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intensity-related changes in cochlear blood flow in the guinea pig during and following acoustic exposure.
    Scheibe F; Haupt H; Ludwig C
    Eur Arch Otorhinolaryngol; 1993; 250(5):281-5. PubMed ID: 8217130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.