These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 8643340)

  • 1. Double-stranded RNA: the variables controlling its degradation by RNases.
    Yakovlev GI; Sorrentino S; Moiseyev GP; Libonati M
    Nucleic Acids Symp Ser; 1995; (33):106-8. PubMed ID: 8643340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-strand-preferring RNases degrade double-stranded RNAs by destabilizing its secondary structure.
    Yakovlev G; Moiseyev GP; Sorrentino S; De Prisco R; Libonati M
    J Biomol Struct Dyn; 1997 Oct; 15(2):243-50. PubMed ID: 9399152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of double-stranded RNA by human pancreatic ribonuclease: crucial role of noncatalytic basic amino acid residues.
    Sorrentino S; Naddeo M; Russo A; D'Alessio G
    Biochemistry; 2003 Sep; 42(34):10182-90. PubMed ID: 12939146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human pancreatic-type and nonpancreatic-type ribonucleases: a direct side-by-side comparison of their catalytic properties.
    Sorrentino S; Libonati M
    Arch Biochem Biophys; 1994 Aug; 312(2):340-8. PubMed ID: 8037446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revisiting the action of bovine ribonuclease A and pancreatic-type ribonucleases on double-stranded RNA.
    Libonati M; Sorrentino S
    Mol Cell Biochem; 1992 Nov; 117(2):139-51. PubMed ID: 1488047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The non-RNase H domain of Saccharomyces cerevisiae RNase H1 binds double-stranded RNA: magnesium modulates the switch between double-stranded RNA binding and RNase H activity.
    Cerritelli SM; Crouch RJ
    RNA; 1995 May; 1(3):246-59. PubMed ID: 7489497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The activity on double-stranded RNA of aggregates of ribonuclease A higher than dimers increases as a function of the size of the aggregates.
    Libonati M; Bertoldi M; Sorrentino S
    Biochem J; 1996 Aug; 318 ( Pt 1)(Pt 1):287-90. PubMed ID: 8761484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin of the catalytic activity of bovine seminal ribonuclease against double-stranded RNA.
    Opitz JG; Ciglic MI; Haugg M; Trautwein-Fritz K; Raillard SA; Jermann TM; Benner SA
    Biochemistry; 1998 Mar; 37(12):4023-33. PubMed ID: 9521723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Action of Pennisetum typhoides double-stranded ribonuclease on viral ds RNAs.
    Maran A; Shanmugam G
    Biochem Int; 1985 Oct; 11(4):617-25. PubMed ID: 3910048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coulombic forces in protein-RNA interactions: binding and cleavage by ribonuclease A and variants at Lys7, Arg10, and Lys66.
    Fisher BM; Ha JH; Raines RT
    Biochemistry; 1998 Sep; 37(35):12121-32. PubMed ID: 9724524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human seminal ribonuclease. A tool to check the role of basic charges and glycosylation of a ribonuclease in the action of the enzyme on double-stranded RNA.
    Sorrentino S; Lavitrano M; De Prisco R; Libonati M
    Biochim Biophys Acta; 1985 Feb; 827(2):135-9. PubMed ID: 3967033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterodimer-based analysis of subunit and domain contributions to double-stranded RNA processing by Escherichia coli RNase III in vitro.
    Meng W; Nicholson AW
    Biochem J; 2008 Feb; 410(1):39-48. PubMed ID: 17953512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interferon-gamma activates the cleavage of double-stranded RNA by bovine seminal ribonuclease.
    Schein CH; Haugg M; Benner SA
    FEBS Lett; 1990 Sep; 270(1-2):229-32. PubMed ID: 2121524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zinc-alpha 2-glycoprotein has ribonuclease activity.
    Lei G; Arany I; Tyring SK; Brysk H; Brysk MM
    Arch Biochem Biophys; 1998 Jul; 355(2):160-4. PubMed ID: 9675022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural determinants of the uridine-preferring specificity of RNase PL3.
    Vicentini AM; Kote-Jarai Z; Hofsteenge J
    Biochemistry; 1996 Jul; 35(28):9128-32. PubMed ID: 8703917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic control of enzymic degradation of double-stranded RNA.
    Sorrentino S; Carsana A; Furia A; Doskocil J; Libonati M
    Biochim Biophys Acta; 1980 Aug; 609(1):40-52. PubMed ID: 6250614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of double-stranded RNA by a monomeric derivative of ribonuclease BS-1.
    Libonati M; Malorni MC; Parente A; D'Alessio G
    Biochim Biophys Acta; 1975 Aug; 402(1):83-7. PubMed ID: 1098696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibrational CD study of the thermal denaturation of poly(rA).poly(rU).
    Yang L; Keiderling TA
    Biopolymers; 1993 Feb; 33(2):315-27. PubMed ID: 8485302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in glycosylation pattern of human secretory ribonucleases.
    Beintema JJ; Blank A; Schieven GL; Dekker CA; Sorrentino S; Libonati M
    Biochem J; 1988 Oct; 255(2):501-5. PubMed ID: 3202829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A single amino acid substitution changes ribonuclease 4 from a uridine-specific to a cytidine-specific enzyme.
    Hofsteenge J; Moldow C; Vicentini AM; Zelenko O; Jarai-Kote Z; Neumann U
    Biochemistry; 1998 Jun; 37(26):9250-7. PubMed ID: 9649305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.