BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 8643526)

  • 1. Exploring the active site of chorismate mutase by combinatorial mutagenesis and selection: the importance of electrostatic catalysis.
    Kast P; Asif-Ullah M; Jiang N; Hilvert D
    Proc Natl Acad Sci U S A; 1996 May; 93(10):5043-8. PubMed ID: 8643526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective stabilization of the chorismate mutase transition state by a positively charged hydrogen bond donor.
    Kienhöfer A; Kast P; Hilvert D
    J Am Chem Soc; 2003 Mar; 125(11):3206-7. PubMed ID: 12630863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacillus subtilis chorismate mutase is partially diffusion-controlled.
    Mattei P; Kast P; Hilvert D
    Eur J Biochem; 1999 Apr; 261(1):25-32. PubMed ID: 10103029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The monofunctional chorismate mutase from Bacillus subtilis. Structure determination of chorismate mutase and its complexes with a transition state analog and prephenate, and implications for the mechanism of the enzymatic reaction.
    Chook YM; Gray JV; Ke H; Lipscomb WN
    J Mol Biol; 1994 Jul; 240(5):476-500. PubMed ID: 8046752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of site-directed mutagenesis to identify residues specific for each reaction catalyzed by chorismate mutase-prephenate dehydrogenase from Escherichia coli.
    Christendat D; Saridakis VC; Turnbull JL
    Biochemistry; 1998 Nov; 37(45):15703-12. PubMed ID: 9843375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics of a transition state analogue inhibitor binding to Escherichia coli chorismate mutase: probing the charge state of an active site residue and its role in inhibitor binding and catalysis.
    Lee AY; Zhang S; Kongsaeree P; Clardy J; Ganem B; Erickson JW; Xie D
    Biochemistry; 1998 Jun; 37(25):9052-7. PubMed ID: 9636050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A glutamate residue in the catalytic center of the yeast chorismate mutase restricts enzyme activity to acidic conditions.
    Schnappauf G; Sträter N; Lipscomb WN; Braus GH
    Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8491-6. PubMed ID: 9238004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the role of the C-terminus of Bacillus subtilis chorismate mutase by a novel random protein-termination strategy.
    Gamper M; Hilvert D; Kast P
    Biochemistry; 2000 Nov; 39(46):14087-94. PubMed ID: 11087356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 13C NMR studies of the enzyme-product complex of Bacillus subtilis chorismate mutase.
    Rajagopalan JS; Taylor KM; Jaffe EK
    Biochemistry; 1993 Apr; 32(15):3965-72. PubMed ID: 8471608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preorganization and reorganization as related factors in enzyme catalysis: the chorismate mutase case.
    Martí S; Andrés J; Moliner V; Silla E; Tuñón I; Bertrán J
    Chemistry; 2003 Feb; 9(4):984-91. PubMed ID: 12584715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of catalysis and allosteric regulation of yeast chorismate mutase from crystal structures.
    Sträter N; Schnappauf G; Braus G; Lipscomb WN
    Structure; 1997 Nov; 5(11):1437-52. PubMed ID: 9384560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of catalysis of the chorismate to prephenate reaction by the Escherichia coli mutase enzyme.
    Hur S; Bruice TC
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1176-81. PubMed ID: 11818529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monofunctional chorismate mutase from Bacillus subtilis: FTIR studies and the mechanism of action of the enzyme.
    Gray JV; Knowles JR
    Biochemistry; 1994 Aug; 33(33):9953-9. PubMed ID: 8061004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The near attack conformation approach to the study of the chorismate to prephenate reaction.
    Hur S; Bruice TC
    Proc Natl Acad Sci U S A; 2003 Oct; 100(21):12015-20. PubMed ID: 14523243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A strategically positioned cation is crucial for efficient catalysis by chorismate mutase.
    Kast P; Grisostomi C; Chen IA; Li S; Krengel U; Xue Y; Hilvert D
    J Biol Chem; 2000 Nov; 275(47):36832-8. PubMed ID: 10960481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the role of active-site residues in chorismate mutase catalysis from molecular-dynamics simulations.
    Guo H; Cui Q; Lipscomb WN; Karplus M
    Angew Chem Int Ed Engl; 2003 Apr; 42(13):1508-11. PubMed ID: 12698486
    [No Abstract]   [Full Text] [Related]  

  • 17. Monofunctional chorismate mutase from Bacillus subtilis: purification of the protein, molecular cloning of the gene, and overexpression of the gene product in Escherichia coli.
    Gray JV; Golinelli-Pimpaneau B; Knowles JR
    Biochemistry; 1990 Jan; 29(2):376-83. PubMed ID: 2105742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of active site residues of chorismate mutase-prephenate dehydrogenase from Escherichia coli.
    Christendat D; Turnbull J
    Biochemistry; 1996 Apr; 35(14):4468-79. PubMed ID: 8605196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of formation of reactive conformers (NACs) for the Claisen rearrangement of chorismate to prephenate in water and in the E. coli mutase: the efficiency of the enzyme catalysis.
    Hur S; Bruice TC
    J Am Chem Soc; 2003 May; 125(19):5964-72. PubMed ID: 12733937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate conformational transitions in the active site of chorismate mutase: their role in the catalytic mechanism.
    Guo H; Cui Q; Lipscomb WN; Karplus M
    Proc Natl Acad Sci U S A; 2001 Jul; 98(16):9032-7. PubMed ID: 11481470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.