These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 8643537)
1. Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Davidson JF; Whyte B; Bissinger PH; Schiestl RH Proc Natl Acad Sci U S A; 1996 May; 93(10):5116-21. PubMed ID: 8643537 [TBL] [Abstract][Full Text] [Related]
2. Role of glutathione in heat-shock-induced cell death of Saccharomyces cerevisiae. Sugiyama K; Kawamura A; Izawa S; Inoue Y Biochem J; 2000 Nov; 352 Pt 1(Pt 1):71-8. PubMed ID: 11062059 [TBL] [Abstract][Full Text] [Related]
3. Thermosensitive phenotype of yeast mutant lacking thioredoxin peroxidase. Lee SM; Park JW Arch Biochem Biophys; 1998 Nov; 359(1):99-106. PubMed ID: 9799566 [TBL] [Abstract][Full Text] [Related]
4. The antioxidant transcription factor Nrf2 contributes to the protective effect of mild thermotolerance (40°C) against heat shock-induced apoptosis. Glory A; Averill-Bates DA Free Radic Biol Med; 2016 Oct; 99():485-497. PubMed ID: 27591796 [TBL] [Abstract][Full Text] [Related]
5. Cytotoxic and genotoxic consequences of heat stress are dependent on the presence of oxygen in Saccharomyces cerevisiae. Davidson JF; Schiestl RH J Bacteriol; 2001 Aug; 183(15):4580-7. PubMed ID: 11443093 [TBL] [Abstract][Full Text] [Related]
6. Antioxidant activity of L-ascorbic acid in wild-type and superoxide dismutase deficient strains of Saccharomyces cerevisiae. Saffi J; Sonego L; Varela QD; Salvador M Redox Rep; 2006; 11(4):179-84. PubMed ID: 16984741 [TBL] [Abstract][Full Text] [Related]
7. Growth temperature downshift induces antioxidant response in Saccharomyces cerevisiae. Zhang L; Onda K; Imai R; Fukuda R; Horiuchi H; Ohta A Biochem Biophys Res Commun; 2003 Jul; 307(2):308-14. PubMed ID: 12859956 [TBL] [Abstract][Full Text] [Related]
8. Sensitivity of antioxidant-deficient yeast to hypochlorite and chlorite. Kwolek-Mirek M; Bartosz G; Spickett CM Yeast; 2011 Aug; 28(8):595-609. PubMed ID: 21761455 [TBL] [Abstract][Full Text] [Related]
9. Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Steels EL; Learmonth RP; Watson K Microbiology (Reading); 1994 Mar; 140 ( Pt 3)():569-76. PubMed ID: 8012580 [TBL] [Abstract][Full Text] [Related]
10. The high general stress resistance of the Saccharomyces cerevisiae fil1 adenylate cyclase mutant (Cyr1Lys1682) is only partially dependent on trehalose, Hsp104 and overexpression of Msn2/4-regulated genes. Versele M; Thevelein JM; Van Dijck P Yeast; 2004 Jan; 21(1):75-86. PubMed ID: 14745784 [TBL] [Abstract][Full Text] [Related]
11. Cu/Zn-superoxide dismutase and glutathione are involved in response to oxidative stress induced by protein denaturing effect of alachlor in Saccharomyces cerevisiae. Rattanawong K; Kerdsomboon K; Auesukaree C Free Radic Biol Med; 2015 Dec; 89():963-71. PubMed ID: 26518674 [TBL] [Abstract][Full Text] [Related]
12. Response to different oxidants of Saccharomyces cerevisiae ure2Delta mutant. Todorova TT; Petrova VY; Vuilleumier S; Kujumdzieva AV Arch Microbiol; 2009 Nov; 191(11):837-45. PubMed ID: 19777209 [TBL] [Abstract][Full Text] [Related]
14. Hsp104 responds to heat and oxidative stress with different intracellular localization in Saccharomyces cerevisiae. Fujita K; Kawai R; Iwahashi H; Komatsu Y Biochem Biophys Res Commun; 1998 Jul; 248(3):542-7. PubMed ID: 9703962 [TBL] [Abstract][Full Text] [Related]
15. [Induction of Hsp104 synthesis in Saccharomyces cerevisiae is inhibited by the petite mutation in the stationary growth phase]. Fedoseeva IV; Rikhanov EG; Varakina NN; Rusaleva TM; Pyatrikas DV; Stepanov AV; Fedyaeva AV Genetika; 2014 Mar; 50(3):273-81. PubMed ID: 25438547 [TBL] [Abstract][Full Text] [Related]
16. Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae. Jakubowski W; Biliński T; Bartosz G Free Radic Biol Med; 2000 Mar; 28(5):659-64. PubMed ID: 10754260 [TBL] [Abstract][Full Text] [Related]
17. Acquisition of heat shock tolerance by regulation of intracellular redox states. Ueom J; Kwon S; Kim S; Chae Y; Lee K Biochim Biophys Acta; 2003 Sep; 1642(1-2):9-16. PubMed ID: 12972288 [TBL] [Abstract][Full Text] [Related]
18. Cadmium-induced oxidative stress in Saccharomyces cerevisiae. Muthukumar K; Nachiappan V Indian J Biochem Biophys; 2010 Dec; 47(6):383-7. PubMed ID: 21355423 [TBL] [Abstract][Full Text] [Related]
19. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae. Pereira MD; Eleutherio EC; Panek AD BMC Microbiol; 2001; 1():11. PubMed ID: 11483159 [TBL] [Abstract][Full Text] [Related]
20. Heat shock factor-independent heat control of transcription of the CTT1 gene encoding the cytosolic catalase T of Saccharomyces cerevisiae. Wieser R; Adam G; Wagner A; Schüller C; Marchler G; Ruis H; Krawiec Z; Bilinski T J Biol Chem; 1991 Jul; 266(19):12406-11. PubMed ID: 2061315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]