BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

849 related articles for article (PubMed ID: 8643552)

  • 1. Cloning and expression in Escherichia coli of the OGG1 gene of Saccharomyces cerevisiae, which codes for a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine.
    van der Kemp PA; Thomas D; Barbey R; de Oliveira R; Boiteux S
    Proc Natl Acad Sci U S A; 1996 May; 93(11):5197-202. PubMed ID: 8643552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Ogg1 protein of Saccharomyces cerevisiae: a 7,8-dihydro-8-oxoguanine DNA glycosylase/AP lyase whose lysine 241 is a critical residue for catalytic activity.
    Girard PM; Guibourt N; Boiteux S
    Nucleic Acids Res; 1997 Aug; 25(16):3204-11. PubMed ID: 9241232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites.
    Bjorâs M; Luna L; Johnsen B; Hoff E; Haug T; Rognes T; Seeberg E
    EMBO J; 1997 Oct; 16(20):6314-22. PubMed ID: 9321410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae.
    Radicella JP; Dherin C; Desmaze C; Fox MS; Boiteux S
    Proc Natl Acad Sci U S A; 1997 Jul; 94(15):8010-5. PubMed ID: 9223305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of the Fpg protein of Escherichia coli in Saccharomyces cerevisiae: effects on spontaneous mutagenesis and sensitivity to oxidative DNA damage.
    Guibourt N; Boiteux S
    Biochimie; 2000 Jan; 82(1):59-64. PubMed ID: 10717388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opposite base-dependent excision of 7,8-dihydro-8-oxoadenine by the Ogg1 protein of Saccharomyces cerevisiae.
    Girard PM; D'Ham C; Cadet J; Boiteux S
    Carcinogenesis; 1998 Jul; 19(7):1299-305. PubMed ID: 9683192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of OGG1 increases the incidence of G . C-->T . A transversions in Saccharomyces cerevisiae: evidence for endogenous oxidative damage to DNA in eukaryotic cells.
    Thomas D; Scot AD; Barbey R; Padula M; Boiteux S
    Mol Gen Genet; 1997 Mar; 254(2):171-8. PubMed ID: 9108279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases.
    Boiteux S; Coste F; Castaing B
    Free Radic Biol Med; 2017 Jun; 107():179-201. PubMed ID: 27903453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rat 7,8-dihydro-8-oxoguanine DNA glycosylase: substrate specificity, kinetics and cleavagemechanism at an apurinic site.
    Prieto Alamo MJ; Jurado J; Francastel E; Laval F
    Nucleic Acids Res; 1998 Nov; 26(22):5199-202. PubMed ID: 9801319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple DNA glycosylases for repair of 8-oxoguanine and their potential in vivo functions.
    Hazra TK; Hill JW; Izumi T; Mitra S
    Prog Nucleic Acid Res Mol Biol; 2001; 68():193-205. PubMed ID: 11554297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cleavage and binding of a DNA fragment containing a single 8-oxoguanine by wild type and mutant FPG proteins.
    Castaing B; Geiger A; Seliger H; Nehls P; Laval J; Zelwer C; Boiteux S
    Nucleic Acids Res; 1993 Jun; 21(12):2899-905. PubMed ID: 8332499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily.
    Nash HM; Bruner SD; Schärer OD; Kawate T; Addona TA; Spooner E; Lane WS; Verdine GL
    Curr Biol; 1996 Aug; 6(8):968-80. PubMed ID: 8805338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repair of oxidative DNA damage in Drosophila melanogaster: identification and characterization of dOgg1, a second DNA glycosylase activity for 8-hydroxyguanine and formamidopyrimidines.
    Dherin C; Dizdaroglu M; Doerflinger H; Boiteux S; Radicella JP
    Nucleic Acids Res; 2000 Dec; 28(23):4583-92. PubMed ID: 11095666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formamidopyrimidine DNA glycosylase in the yeast Saccharomyces cerevisiae.
    de Oliveira R; van der Kemp PA; Thomas D; Geiger A; Nehls P; Boiteux S
    Nucleic Acids Res; 1994 Sep; 22(18):3760-4. PubMed ID: 7937089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Escherichia coli MutY protein has a guanine-DNA glycosylase that acts on 7,8-dihydro-8-oxoguanine:guanine mispair to prevent spontaneous G:C-->C:G transversions.
    Zhang QM; Ishikawa N; Nakahara T; Yonei S
    Nucleic Acids Res; 1998 Oct; 26(20):4669-75. PubMed ID: 9753736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repair of oxidative DNA damage in gram-positive bacteria: the Lactococcus lactis Fpg protein.
    Duwat P; de Oliveira R; Ehrlich SD; Boiteux S
    Microbiology (Reading); 1995 Feb; 141 ( Pt 2)():411-7. PubMed ID: 7704272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific recognition of A/G and A/7,8-dihydro-8-oxoguanine (8-oxoG) mismatches by Escherichia coli MutY: removal of the C-terminal domain preferentially affects A/8-oxoG recognition.
    Gogos A; Cillo J; Clarke ND; Lu AL
    Biochemistry; 1996 Dec; 35(51):16665-71. PubMed ID: 8988002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the N-terminal proline residue in the catalytic activities of the Escherichia coli Fpg protein.
    Sidorkina OM; Laval J
    J Biol Chem; 2000 Apr; 275(14):9924-9. PubMed ID: 10744666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repair of 8-oxoguanine in Saccharomyces cerevisiae: interplay of DNA repair and replication mechanisms.
    Boiteux S; Gellon L; Guibourt N
    Free Radic Biol Med; 2002 Jun; 32(12):1244-53. PubMed ID: 12057762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair.
    Hill JW; Hazra TK; Izumi T; Mitra S
    Nucleic Acids Res; 2001 Jan; 29(2):430-8. PubMed ID: 11139613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.