These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 8643562)

  • 21. Alteration of a novel dispensable mitochondrial ribosomal small-subunit protein, Rsm28p, allows translation of defective COX2 mRNAs.
    Williams EH; Bsat N; Bonnefoy N; Butler CA; Fox TD
    Eukaryot Cell; 2005 Feb; 4(2):337-45. PubMed ID: 15701796
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic strategies for identification of mitochondrial translation factors in Saccharomyces cerevisiae.
    Fox TD
    Methods Enzymol; 1996; 264():228-37. PubMed ID: 8965696
    [No Abstract]   [Full Text] [Related]  

  • 23. Site-directed mutagenesis of a Saccharomyces cerevisiae mitochondrial translation initiation codon.
    Folley LS; Fox TD
    Genetics; 1991 Nov; 129(3):659-68. PubMed ID: 1661254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The ARG8
    Flores-Mireles D; Camacho-Villasana Y; Pérez-Martínez X
    Methods Mol Biol; 2023; 2661():281-301. PubMed ID: 37166643
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The S. cerevisiae nuclear gene SUV3 encoding a putative RNA helicase is necessary for the stability of mitochondrial transcripts containing multiple introns.
    Golik P; Szczepanek T; Bartnik E; Stepien PP; Lazowska J
    Curr Genet; 1995 Aug; 28(3):217-24. PubMed ID: 8529267
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pet111p, an inner membrane-bound translational activator that limits expression of the Saccharomyces cerevisiae mitochondrial gene COX2.
    Green-Willms NS; Butler CA; Dunstan HM; Fox TD
    J Biol Chem; 2001 Mar; 276(9):6392-7. PubMed ID: 11106667
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nuclear functions required for cytochrome c oxidase biogenesis in Saccharomyces cerevisiae: multiple trans-acting nuclear genes exert specific effects on expression of each of the cytochrome c oxidase subunits encoded on mitochondrial DNA.
    Kloeckener-Gruissem B; McEwen JE; Poyton RO
    Curr Genet; 1987; 12(5):311-22. PubMed ID: 2833360
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The mitoribosome-specific protein mS38 is preferentially required for synthesis of cytochrome c oxidase subunits.
    Mays JN; Camacho-Villasana Y; Garcia-Villegas R; Perez-Martinez X; Barrientos A; Fontanesi F
    Nucleic Acids Res; 2019 Jun; 47(11):5746-5760. PubMed ID: 30968120
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The PET54 gene of Saccharomyces cerevisiae: characterization of a nuclear gene encoding a mitochondrial translational activator and subcellular localization of its product.
    Costanzo MC; Seaver EC; Fox TD
    Genetics; 1989 Jun; 122(2):297-305. PubMed ID: 2548921
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression of the divergent transcription unit containing the yeast PET122 and OXA1 genes.
    Marathe SV; McEwen JE
    Biochem Mol Biol Int; 1999 Jun; 47(6):971-7. PubMed ID: 10410243
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mam33 promotes cytochrome c oxidase subunit I translation in Saccharomyces cerevisiae mitochondria.
    Roloff GA; Henry MF
    Mol Biol Cell; 2015 Aug; 26(16):2885-94. PubMed ID: 26108620
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rpm2, the protein subunit of mitochondrial RNase P in Saccharomyces cerevisiae, also has a role in the translation of mitochondrially encoded subunits of cytochrome c oxidase.
    Stribinskis V; Gao GJ; Ellis SR; Martin NC
    Genetics; 2001 Jun; 158(2):573-85. PubMed ID: 11404323
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aep3p-dependent translation of yeast mitochondrial
    Barros MH; Tzagoloff A
    Mol Biol Cell; 2017 Jun; 28(11):1426-1434. PubMed ID: 28404747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Novel Function of Pet54 in Regulation of Cox1 Synthesis in Saccharomyces cerevisiae Mitochondria.
    Mayorga JP; Camacho-Villasana Y; Shingú-Vázquez M; García-Villegas R; Zamudio-Ochoa A; García-Guerrero AE; Hernández G; Pérez-Martínez X
    J Biol Chem; 2016 Apr; 291(17):9343-55. PubMed ID: 26929411
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduced dosage of genes encoding ribosomal protein S18 suppresses a mitochondrial initiation codon mutation in Saccharomyces cerevisiae.
    Folley LS; Fox TD
    Genetics; 1994 Jun; 137(2):369-79. PubMed ID: 8070651
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A point mutation in the 5'-untranslated leader that affects translational activation of the mitochondrial COX3 mRNA.
    Costanzo MC; Fox TD
    Curr Genet; 1995 Jun; 28(1):60-6. PubMed ID: 8536314
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Escape of DNA from mitochondria to the nucleus in Saccharomyces cerevisiae.
    Thorsness PE; Fox TD
    Nature; 1990 Jul; 346(6282):376-9. PubMed ID: 2165219
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional interactions between yeast mitochondrial ribosomes and mRNA 5' untranslated leaders.
    Green-Willms NS; Fox TD; Costanzo MC
    Mol Cell Biol; 1998 Apr; 18(4):1826-34. PubMed ID: 9528754
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel small-subunit ribosomal protein of yeast mitochondria that interacts functionally with an mRNA-specific translational activator.
    McMullin TW; Haffter P; Fox TD
    Mol Cell Biol; 1990 Sep; 10(9):4590-5. PubMed ID: 2167435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. At least two nuclear gene products are specifically required for translation of a single yeast mitochondrial mRNA.
    Costanzo MC; Seaver EC; Fox TD
    EMBO J; 1986 Dec; 5(13):3637-41. PubMed ID: 3030734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.