These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 8643620)
1. Active barnase variants with completely random hydrophobic cores. Axe DD; Foster NW; Fersht AR Proc Natl Acad Sci U S A; 1996 May; 93(11):5590-4. PubMed ID: 8643620 [TBL] [Abstract][Full Text] [Related]
2. An irregular beta-bulge common to a group of bacterial RNases is an important determinant of stability and function in barnase. Axe DD; Foster NW; Fersht AR J Mol Biol; 1999 Mar; 286(5):1471-85. PubMed ID: 10064710 [TBL] [Abstract][Full Text] [Related]
3. Foldability, enzymatic activity, and interacting ability of barnase mutants obtained by permutation of secondary structure units. Tsuji T; Yanagawa H Biochemistry; 2004 Jun; 43(22):6968-75. PubMed ID: 15170334 [TBL] [Abstract][Full Text] [Related]
4. Crystal structural analysis of mutations in the hydrophobic cores of barnase. Buckle AM; Henrick K; Fersht AR J Mol Biol; 1993 Dec; 234(3):847-60. PubMed ID: 8254677 [TBL] [Abstract][Full Text] [Related]
6. Characterization of phosphate binding in the active site of barnase by site-directed mutagenesis and NMR. Meiering EM; Bycroft M; Fersht AR Biochemistry; 1991 Nov; 30(47):11348-56. PubMed ID: 1958671 [TBL] [Abstract][Full Text] [Related]
7. Structural and energetic responses to cavity-creating mutations in hydrophobic cores: observation of a buried water molecule and the hydrophilic nature of such hydrophobic cavities. Buckle AM; Cramer P; Fersht AR Biochemistry; 1996 Apr; 35(14):4298-305. PubMed ID: 8605178 [TBL] [Abstract][Full Text] [Related]
8. X-ray structural analysis of compensating mutations at the barnase-barstar interface. Martin C; Hartley R; Mauguen Y FEBS Lett; 1999 Jun; 452(3):128-32. PubMed ID: 10386576 [TBL] [Abstract][Full Text] [Related]
9. Structure of the transition state for folding of the 129 aa protein CheY resembles that of a smaller protein, CI-2. López-Hernández E; Serrano L Fold Des; 1996; 1(1):43-55. PubMed ID: 9079363 [TBL] [Abstract][Full Text] [Related]
10. Kinetic characterization of the recombinant ribonuclease from Bacillus amyloliquefaciens (barnase) and investigation of key residues in catalysis by site-directed mutagenesis. Mossakowska DE; Nyberg K; Fersht AR Biochemistry; 1989 May; 28(9):3843-50. PubMed ID: 2665810 [TBL] [Abstract][Full Text] [Related]
11. The role of Glu73 of barnase in catalysis and the binding of barstar. Schreiber G; Frisch C; Fersht AR J Mol Biol; 1997 Jul; 270(1):111-22. PubMed ID: 9231905 [TBL] [Abstract][Full Text] [Related]
12. In vivo system for the detection of low level activity barnase mutants. Jucovic M; Hartley RW Protein Eng; 1995 May; 8(5):497-9. PubMed ID: 8532672 [TBL] [Abstract][Full Text] [Related]
13. Stabilization of proteins by enhancement of inter-residue hydrophobic contacts: lessons of T4 lysozyme and barnase. Golovanov AP; Vergoten G; Arseniev AS J Biomol Struct Dyn; 2000 Dec; 18(3):477-91. PubMed ID: 11149522 [TBL] [Abstract][Full Text] [Related]
14. Functional analyses of carnivorous plant-specific amino acid residues in S-like ribonucleases. Arai N; Nishimura E; Kikuchi Y; Ohyama T Biochem Biophys Res Commun; 2015 Sep; 465(1):108-12. PubMed ID: 26235877 [TBL] [Abstract][Full Text] [Related]
15. Exhaustive mutagenesis of six secondary active-site residues in Escherichia coli chorismate mutase shows the importance of hydrophobic side chains and a helix N-capping position for stability and catalysis. Lassila JK; Keeffe JR; Kast P; Mayo SL Biochemistry; 2007 Jun; 46(23):6883-91. PubMed ID: 17506527 [TBL] [Abstract][Full Text] [Related]
16. Directed evolution of barnase stability using proteolytic selection. Pedersen JS; Otzen DE; Kristensen P J Mol Biol; 2002 Oct; 323(1):115-23. PubMed ID: 12368103 [TBL] [Abstract][Full Text] [Related]
17. A new method to characterize hydrophobic organization of proteins: application to rational protein engineering of barnase. Golovanov AP; Efremov RG; Jaravine VA; Vergoten G; Kirpichnikov MP; Arseniev AS J Biomol Struct Dyn; 1998 Feb; 15(4):673-87. PubMed ID: 9514245 [TBL] [Abstract][Full Text] [Related]
18. Importance of two buried salt bridges in the stability and folding pathway of barnase. Tissot AC; Vuilleumier S; Fersht AR Biochemistry; 1996 May; 35(21):6786-94. PubMed ID: 8639630 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of a pyrimidine dimer-specific excision repair enzyme from bacteriophage T4: refinement at 1.45 A and X-ray analysis of the three active site mutants. Morikawa K; Ariyoshi M; Vassylyev DG; Matsumoto O; Katayanagi K; Ohtsuka E J Mol Biol; 1995 Jun; 249(2):360-75. PubMed ID: 7783199 [TBL] [Abstract][Full Text] [Related]
20. Foldability of barnase mutants obtained by permutation of modules or secondary structure units. Tsuji T; Yoshida K; Satoh A; Kohno T; Kobayashi K; Yanagawa H J Mol Biol; 1999 Mar; 286(5):1581-96. PubMed ID: 10064693 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]