These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 8643620)
41. Detection of anticodon nuclease residues involved in tRNALys cleavage specificity. Meidler R; Morad I; Amitsur M; Inokuchi H; Kaufmann G J Mol Biol; 1999 Apr; 287(3):499-510. PubMed ID: 10092455 [TBL] [Abstract][Full Text] [Related]
42. Three-dimensional crystal structure of human eosinophil cationic protein (RNase 3) at 1.75 A resolution. Mallorquí-Fernández G; Pous J; Peracaula R; Aymamí J; Maeda T; Tada H; Yamada H; Seno M; de Llorens R; Gomis-Rüth FX; Coll M J Mol Biol; 2000 Jul; 300(5):1297-307. PubMed ID: 10903870 [TBL] [Abstract][Full Text] [Related]
43. Unfolding simulations of the 85-102 beta-hairpin of barnase. Pugliese L; Prévost M; Wodak SJ J Mol Biol; 1995 Aug; 251(3):432-47. PubMed ID: 7650741 [TBL] [Abstract][Full Text] [Related]
44. Mutational analysis of the thermostable arginine repressor from Bacillus stearothermophilus: dissecting residues involved in DNA binding properties. Karaivanova IM; Weigel P; Takahashi M; Fort C; Versavaud A; Van Duyne G; Charlier D; Hallet JN; Glansdorff N; Sakanyan V J Mol Biol; 1999 Aug; 291(4):843-55. PubMed ID: 10452892 [TBL] [Abstract][Full Text] [Related]
45. Enzymatic and structural characterisation of amphinase, a novel cytotoxic ribonuclease from Rana pipiens oocytes. Singh UP; Ardelt W; Saxena SK; Holloway DE; Vidunas E; Lee HS; Saxena A; Shogen K; Acharya KR J Mol Biol; 2007 Aug; 371(1):93-111. PubMed ID: 17560606 [TBL] [Abstract][Full Text] [Related]
46. cDNA cloning, expression, and mutagenesis of a PR-10 protein SPE-16 from the seeds of Pachyrrhizus erosus. Wu F; Yan M; Li Y; Chang S; Song X; Zhou Z; Gong W Biochem Biophys Res Commun; 2003 Dec; 312(3):761-6. PubMed ID: 14680830 [TBL] [Abstract][Full Text] [Related]
47. Folding intermediates of wild-type and mutants of barnase. II. Correlation of changes in equilibrium amide exchange kinetics with the population of the folding intermediate. Dalby PA; Clarke J; Johnson CM; Fersht AR J Mol Biol; 1998 Feb; 276(3):647-56. PubMed ID: 9551102 [TBL] [Abstract][Full Text] [Related]
48. Towards a complete description of the structural and dynamic properties of the denatured state of barnase and the role of residual structure in folding. Wong KB; Clarke J; Bond CJ; Neira JL; Freund SM; Fersht AR; Daggett V J Mol Biol; 2000 Mar; 296(5):1257-82. PubMed ID: 10698632 [TBL] [Abstract][Full Text] [Related]
49. Parallel functional changes in the digestive RNases of ruminants and colobines by divergent amino acid substitutions. Zhang J Mol Biol Evol; 2003 Aug; 20(8):1310-7. PubMed ID: 12777504 [TBL] [Abstract][Full Text] [Related]
50. Refined crystal structures of native human angiogenin and two active site variants: implications for the unique functional properties of an enzyme involved in neovascularisation during tumour growth. Leonidas DD; Shapiro R; Allen SC; Subbarao GV; Veluraja K; Acharya KR J Mol Biol; 1999 Jan; 285(3):1209-33. PubMed ID: 9918722 [TBL] [Abstract][Full Text] [Related]
51. Directed evolution and structural analysis of N-carbamoyl-D-amino acid amidohydrolase provide insights into recombinant protein solubility in Escherichia coli. Jiang S; Li C; Zhang W; Cai Y; Yang Y; Yang S; Jiang W Biochem J; 2007 Mar; 402(3):429-37. PubMed ID: 17121498 [TBL] [Abstract][Full Text] [Related]
52. Improved peptide function from random mutagenesis over short 'windows'. Dunn IS; Cowan R; Jennings PA Protein Eng; 1988 Oct; 2(4):283-91. PubMed ID: 3150542 [TBL] [Abstract][Full Text] [Related]
53. Fusion of the antiferritin antibody VL domain to barnase results in enhanced solubility and altered pH stability. Martsev SP; Tsybovsky YI; Stremovskiy OA; Odintsov SG; Balandin TG; Arosio P; Kravchuk ZI; Deyev SM Protein Eng Des Sel; 2004 Jan; 17(1):85-93. PubMed ID: 14985541 [TBL] [Abstract][Full Text] [Related]
54. Design of hydrophobic core of E. coli malate dehydrogenase based on the side-chain packing. Kono H; Nishiyama M; Tanokura M; Doi J Pac Symp Biocomput; 1997; ():210-21. PubMed ID: 9390293 [TBL] [Abstract][Full Text] [Related]
55. De novo design of the hydrophobic core of ubiquitin. Lazar GA; Desjarlais JR; Handel TM Protein Sci; 1997 Jun; 6(6):1167-78. PubMed ID: 9194177 [TBL] [Abstract][Full Text] [Related]
56. Crystal structure and structure-based mutational analyses of RNase HIII from Bacillus stearothermophilus: a new type 2 RNase H with TBP-like substrate-binding domain at the N terminus. Chon H; Matsumura H; Koga Y; Takano K; Kanaya S J Mol Biol; 2006 Feb; 356(1):165-78. PubMed ID: 16343535 [TBL] [Abstract][Full Text] [Related]
57. Localized, stereochemically sensitive hydrophobic packing in an early folding intermediate of dihydrofolate reductase from Escherichia coli. O'Neill JC; Robert Matthews C J Mol Biol; 2000 Jan; 295(4):737-44. PubMed ID: 10656786 [TBL] [Abstract][Full Text] [Related]
59. Molecular dynamics simulation of protein denaturation: solvation of the hydrophobic cores and secondary structure of barnase. Caflisch A; Karplus M Proc Natl Acad Sci U S A; 1994 Mar; 91(5):1746-50. PubMed ID: 8127876 [TBL] [Abstract][Full Text] [Related]
60. Hydrophobic side chain requirements for lauric acid and progesterone hydroxylation at amino acid 113 in cytochrome P450 2C2, a potential determinant of substrate specificity. Straub P; Johnson EF; Kemper B Arch Biochem Biophys; 1993 Nov; 306(2):521-7. PubMed ID: 8215458 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]