These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 8643698)
21. Proton transport by a bacteriorhodopsin mutant, aspartic acid-85-->asparagine, initiated in the unprotonated Schiff base state. Dickopf S; Alexiev U; Krebs MP; Otto H; Mollaaghababa R; Khorana HG; Heyn MP Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11519-23. PubMed ID: 8524795 [TBL] [Abstract][Full Text] [Related]
22. Evidence for a bound water molecule next to the retinal Schiff base in bacteriorhodopsin and rhodopsin: a resonance Raman study of the Schiff base hydrogen/deuterium exchange. Deng H; Huang L; Callender R; Ebrey T Biophys J; 1994 Apr; 66(4):1129-36. PubMed ID: 8038384 [TBL] [Abstract][Full Text] [Related]
23. Proton transfer from Asp-96 to the bacteriorhodopsin Schiff base is caused by a decrease of the pKa of Asp-96 which follows a protein backbone conformational change. Cao Y; Váró G; Klinger AL; Czajkowsky DM; Braiman MS; Needleman R; Lanyi JK Biochemistry; 1993 Mar; 32(8):1981-90. PubMed ID: 8448157 [TBL] [Abstract][Full Text] [Related]
24. Lowering the intrinsic pKa of the chromophore's Schiff base can restore its light-induced deprotonation in the inactive Tyr-57-->Asn mutant of bacteriorhodopsin. Govindjee R; Balashov S; Ebrey T; Oesterhelt D; Steinberg G; Sheves M J Biol Chem; 1994 May; 269(20):14353-4. PubMed ID: 8182036 [TBL] [Abstract][Full Text] [Related]
25. Contribution of proton release to the B2 photocurrent of bacteriorhodopsin. Misra S Biophys J; 1998 Jul; 75(1):382-8. PubMed ID: 9649395 [TBL] [Abstract][Full Text] [Related]
26. Asp 46 can substitute Asp 96 as the Schiff base proton donor in bacteriorhodopsin. Coleman M; Nilsson A; Russell TS; Rath P; Pandey R; Rothschild KJ Biochemistry; 1995 Nov; 34(47):15599-606. PubMed ID: 7492563 [TBL] [Abstract][Full Text] [Related]
27. Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base. Otto H; Marti T; Holz M; Mogi T; Stern LJ; Engel F; Khorana HG; Heyn MP Proc Natl Acad Sci U S A; 1990 Feb; 87(3):1018-22. PubMed ID: 2153966 [TBL] [Abstract][Full Text] [Related]
28. Interaction between Asp-85 and the proton-releasing group in bacteriorhodopsin. A study of an O-like photocycle intermediate. Gat Y; Friedman N; Sheves M; Ottolenghi M Biochemistry; 1997 Apr; 36(14):4135-48. PubMed ID: 9100007 [TBL] [Abstract][Full Text] [Related]
29. Replacement of aspartic acid-96 by asparagine in bacteriorhodopsin slows both the decay of the M intermediate and the associated proton movement. Holz M; Drachev LA; Mogi T; Otto H; Kaulen AD; Heyn MP; Skulachev VP; Khorana HG Proc Natl Acad Sci U S A; 1989 Apr; 86(7):2167-71. PubMed ID: 2648392 [TBL] [Abstract][Full Text] [Related]
30. A large photolysis-induced pKa increase of the chromophore counterion in bacteriorhodopsin: implications for ion transport mechanisms of retinal proteins. Braiman MS; Dioumaev AK; Lewis JR Biophys J; 1996 Feb; 70(2):939-47. PubMed ID: 8789111 [TBL] [Abstract][Full Text] [Related]
31. Arginine-82 regulates the pKa of the group responsible for the light-driven proton release in bacteriorhodopsin. Govindjee R; Misra S; Balashov SP; Ebrey TG; Crouch RK; Menick DR Biophys J; 1996 Aug; 71(2):1011-23. PubMed ID: 8842238 [TBL] [Abstract][Full Text] [Related]
32. Estimated acid dissociation constants of the Schiff base, Asp-85, and Arg-82 during the bacteriorhodopsin photocycle. Brown LS; Bonet L; Needleman R; Lanyi JK Biophys J; 1993 Jul; 65(1):124-30. PubMed ID: 8369421 [TBL] [Abstract][Full Text] [Related]
33. Functional significance of a protein conformation change at the cytoplasmic end of helix F during the bacteriorhodopsin photocycle. Brown LS; Váró G; Needleman R; Lanyi JK Biophys J; 1995 Nov; 69(5):2103-11. PubMed ID: 8580354 [TBL] [Abstract][Full Text] [Related]
34. Effects of hydrostatic pressure on the kinetics reveal a volume increase during the bacteriorhodopsin photocycle. Váró G; Lanyi JK Biochemistry; 1995 Sep; 34(38):12161-9. PubMed ID: 7547956 [TBL] [Abstract][Full Text] [Related]
36. Kinetic and spectroscopic evidence for an irreversible step between deprotonation and reprotonation of the Schiff base in the bacteriorhodopsin photocycle. Váró G; Lanyi JK Biochemistry; 1991 May; 30(20):5008-15. PubMed ID: 1645187 [TBL] [Abstract][Full Text] [Related]
37. Titration of the bacteriorhodopsin Schiff base involves titration of an additional protein residue. Zadok U; Asato AE; Sheves M Biochemistry; 2005 Jun; 44(23):8479-85. PubMed ID: 15938637 [TBL] [Abstract][Full Text] [Related]
38. The protonation-deprotonation kinetics of the protonated Schiff base in bicelle bacteriorhodopsin crystals. Sanii LS; Schill AW; Moran CE; El-Sayed MA Biophys J; 2005 Jul; 89(1):444-51. PubMed ID: 15821169 [TBL] [Abstract][Full Text] [Related]
39. Effects of individual genetic substitutions of arginine residues on the deprotonation and reprotonation kinetics of the Schiff base during the bacteriorhodopsin photocycle. Lin GC; el-Sayed MA; Marti T; Stern LJ; Mogi T; Khorana HG Biophys J; 1991 Jul; 60(1):172-8. PubMed ID: 1883936 [TBL] [Abstract][Full Text] [Related]
40. Effects of tryptophan mutation on the deprotonation and reprotonation kinetics of the Schiff base during the photocycle of bacteriorhodopsin. Wu S; Chang Y; el-Sayed MA; Marti T; Mogi T; Khorana HG Biophys J; 1992 May; 61(5):1281-8. PubMed ID: 1318094 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]