These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 8644336)

  • 1. Modification of mitochondrial energy metabolism in brain dead organ donor.
    Sztark F; Thicoïpé M; Lassié P; Dabadie P
    Transplant Proc; 1996 Feb; 28(1):52-3. PubMed ID: 8644336
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolic status of brain-dead patients managed for organ procurement.
    Sztark F; Thicoïpe M; Masson F; Lassié P; Favarel-Garrigues JF; Petit-Jean ME
    Transplant Proc; 1993 Dec; 25(6):3171-2. PubMed ID: 8266504
    [No Abstract]   [Full Text] [Related]  

  • 3. Mitochondrial energy metabolism in brain-dead organ donors.
    Sztark F; Thicoïpé M; Lassié P; Petitjean ME; Dabadie P
    Ann Transplant; 2000; 5(4):41-4. PubMed ID: 11499359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Failure of brain and skeletal muscle energy metabolism in multiple system atrophy shown by in vivo phosphorous MR spectroscopy.
    Martinelli P; Giuliani S; Lodi R; Iotti S; Zaniol P; Barbiroli B
    Adv Neurol; 1996; 69():271-7. PubMed ID: 8615139
    [No Abstract]   [Full Text] [Related]  

  • 5. Comparative study of respiration kinetics and protein composition of skinned fibers from various types of rat muscle.
    Voloshchuk SG; Belikova YO; Klyushnik TP; Benevolensky DS; Saks VA
    Biochemistry (Mosc); 1998 Feb; 63(2):155-8. PubMed ID: 9526107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen uptake kinetics: Why are they so slow? And what do they tell us?
    Grassi B
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():53-65. PubMed ID: 17242491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Atrophy caused by inhibited muscle activity].
    Ohira Y; Wakatsuki T; Ishihara A
    Ryoikibetsu Shokogun Shirizu; 2001; (36):433-8. PubMed ID: 11596431
    [No Abstract]   [Full Text] [Related]  

  • 8. Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms.
    Zoladz JA; Korzeniewski B; Grassi B
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():67-84. PubMed ID: 17242492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial energy metabolism is markedly impaired by D-2-hydroxyglutaric acid in rat tissues.
    Latini A; da Silva CG; Ferreira GC; Schuck PF; Scussiato K; Sarkis JJ; Dutra Filho CS; Wyse AT; Wannmacher CM; Wajner M
    Mol Genet Metab; 2005; 86(1-2):188-99. PubMed ID: 15963747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exercise-induced mitochondrial biogenesis in skeletal muscle.
    Hood DA; Saleem A
    Nutr Metab Cardiovasc Dis; 2007 Jun; 17(5):332-7. PubMed ID: 17467251
    [No Abstract]   [Full Text] [Related]  

  • 11. Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells.
    Kuznetsov AV; Veksler V; Gellerich FN; Saks V; Margreiter R; Kunz WS
    Nat Protoc; 2008; 3(6):965-76. PubMed ID: 18536644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Symmorphosis and livestock bioenergetics: production animal muscle has low mitochondrial volume fractions.
    Hudson NJ
    J Anim Physiol Anim Nutr (Berl); 2009 Feb; 93(1):1-6. PubMed ID: 19386002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chapter 23 Quantification of superoxide production by mouse brain and skeletal muscle mitochondria.
    Malinska D; Kudin AP; Debska-Vielhaber G; Vielhaber S; Kunz WS
    Methods Enzymol; 2009; 456():419-37. PubMed ID: 19348902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice.
    Bonnard C; Durand A; Peyrol S; Chanseaume E; Chauvin MA; Morio B; Vidal H; Rieusset J
    J Clin Invest; 2008 Feb; 118(2):789-800. PubMed ID: 18188455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A prospective study to evaluate the impact of 31P-MRS to determinate mitochondrial dysfunction in skeletal muscle of ALS patients.
    Grehl T; Fischer S; Müller K; Malin JP; Zange J
    Amyotroph Lateral Scler; 2007 Feb; 8(1):4-8. PubMed ID: 17364428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of chronic contractile activity on SS and IMF mitochondrial apoptotic susceptibility in skeletal muscle.
    Adhihetty PJ; Ljubicic V; Hood DA
    Am J Physiol Endocrinol Metab; 2007 Mar; 292(3):E748-55. PubMed ID: 17106065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative phosphorylation in rat skeletal muscles after space flight on board biosatellites.
    Buravkova L; Mailyan E
    J Gravit Physiol; 1997 Jul; 4(2):P127-8. PubMed ID: 11540674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Mitochondrial myopathies].
    Scarlato G; Barbieri S
    Riv Neurol; 1988; 58(1):26-30. PubMed ID: 3047845
    [No Abstract]   [Full Text] [Related]  

  • 19. CKD and Muscle Mitochondrial Energetics.
    Roshanravan B; Kestenbaum B; Gamboa J; Jubrias SA; Ayers E; Curtin L; Himmelfarb J; de Boer IH; Conley KE
    Am J Kidney Dis; 2016 Oct; 68(4):658-659. PubMed ID: 27312460
    [No Abstract]   [Full Text] [Related]  

  • 20. [Biochemical study of deficient mitochondria in muscle tissue].
    Scholte HR
    Ned Tijdschr Geneeskd; 1988 Jun; 132(23):1042-7. PubMed ID: 3386764
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.