These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 8644923)

  • 1. Dynamics of acrylodan-labeled bovine and human serum albumin sequestered within aerosol-OT reverse micelles.
    Lundgren JS; Heitz MP; Bright FV
    Anal Chem; 1995 Oct; 67(20):3775-81. PubMed ID: 8644923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of acrylodan-labeled bovine and human serum albumin entrapped in a sol-gel-derived biogel.
    Jordan JD; Dunbar RA; Bright FV
    Anal Chem; 1995 Jul; 67(14):2436-43. PubMed ID: 8686877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accessibility of the fluorescent reporter group in native, silica-adsorbed, and covalently attached acrylodan-labeled serum albumins.
    Ingersoll CM; Jordan JD; Bright FV
    Anal Chem; 1996 Sep; 68(18):3194-8. PubMed ID: 8797379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dynamical investigation of acrylodan-labeled mutant phosphate binding protein.
    Lundgren JS; Salins LL; Kaneva I; Daunert S
    Anal Chem; 1999 Feb; 71(3):589-95. PubMed ID: 9989379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics surrounding Cys-34 in native, chemically denatured, and silica-adsorbed bovine serum albumin.
    Wang R; Sun S; Bekos EJ; Bright FV
    Anal Chem; 1995 Jan; 67(1):149-59. PubMed ID: 7864387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the cysteine 34 residue in human serum albumin using fluorescence techniques.
    Narazaki R; Maruyama T; Otagiri M
    Biochim Biophys Acta; 1997 Apr; 1338(2):275-81. PubMed ID: 9128146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of acrylodan with human serum albumin. A fluorescence spectroscopic study.
    Moreno F; Cortijo M; González-Jiménez J
    Photochem Photobiol; 1999 Nov; 70(5):695-700. PubMed ID: 10568165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonance energy transfer between tryptophan-214 in human serum albumin and acrylodan, prodan, and promen.
    González-Jiménez J; Cortijo M
    Protein J; 2004 Jul; 23(5):351-5. PubMed ID: 15328891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unfolding of acrylodan-labeled human serum albumin probed by steady-state and time-resolved fluorescence methods.
    Flora K; Brennan JD; Baker GA; Doody MA; Bright FV
    Biophys J; 1998 Aug; 75(2):1084-96. PubMed ID: 9675210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of N-B transition on the microenvironment surrounding 34Cys in human serum albumin.
    Narazaki R; Maruyama T; Otagiri M
    Biol Pharm Bull; 1997 Apr; 20(4):452-4. PubMed ID: 9145230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Urea-induced denaturation of human serum albumin labeled with acrylodan.
    González-Jiménez J; Cortijo M
    J Protein Chem; 2002 Feb; 21(2):75-9. PubMed ID: 11934277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acrylodan can label amino as well as sulfhydryl groups: results with low-density lipoprotein, lipoprotein[a], and lipid-free proteins.
    Mims MP; Sturgis CB; Sparrow JT; Morrisett JD
    Biochemistry; 1993 Sep; 32(35):9215-20. PubMed ID: 8369288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing microenvironment of micelle and albumin using diethyl 6-(dimethylamino)naphthalene-2,3-dicarboxylate: An electroneutral solvatochromic fluorescent probe.
    Mallick S; Pal K; Koner AL
    J Colloid Interface Sci; 2016 Apr; 467():81-89. PubMed ID: 26773610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Analysis of log-normal components of fluorescence spectra of prodan and acrylodan bound to proteins].
    Emel'ianenko VI; Reshetniak IaK; Andreev OA; Burshteĭn EA
    Biofizika; 2000; 45(2):207-19. PubMed ID: 10776530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast hydration dynamics in protein unfolding: human serum albumin.
    Kamal JK; Zhao L; Zewail AH
    Proc Natl Acad Sci U S A; 2004 Sep; 101(37):13411-6. PubMed ID: 15353599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel 7-(dimethylamino)fluorene-based fluorescent probes and their binding to human serum albumin.
    Park KK; Park JW; Hamilton AD
    Org Biomol Chem; 2009 Oct; 7(20):4225-32. PubMed ID: 19795061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic excited-state behavior of rhodamine 3B in AOT reverse micelles sensing contact ion pair to solvent separated ion pair interconversion.
    Ferreira JA; Costa SM
    J Phys Chem B; 2010 Aug; 114(32):10417-26. PubMed ID: 20666438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrile group as infrared probe for the characterization of the conformation of bovine serum albumin solubilized in reverse micelles.
    Xue L; Zou F; Zhao Y; Huang X; Qu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():858-63. PubMed ID: 22902928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescent responses of acrylodan-labeled plasma gelsolin.
    Reid SW; Koepf EK; Burtnick LD
    Arch Biochem Biophys; 1993 Apr; 302(1):31-6. PubMed ID: 8385903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constrained Photophysics of 5,7-dimethoxy-2,3,4,9-tetrahydro-1H-carbazol-1-one in the Bioenvironment of Serum Albumins: A Spectroscopic Endeavour Supported by Molecular Docking Analysis.
    Mitra AK; Sau A; Pal U; Saha C; Basu S
    J Fluoresc; 2017 Jul; 27(4):1547-1558. PubMed ID: 28434063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.