These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 8645007)

  • 1. Further characterization of Escherichia coli alanyl-tRNA synthetase.
    Sood SM; Slattery CW; Filley SJ; Wu MX; Hill KA
    Arch Biochem Biophys; 1996 Apr; 328(2):295-301. PubMed ID: 8645007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of zinc-depleted alanyl-tRNA synthetase from Escherichia coli: role of zinc.
    Sood SM; Wu MX; Hill KA; Slattery CW
    Arch Biochem Biophys; 1999 Aug; 368(2):380-4. PubMed ID: 10441391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid substitutions at position 73 in motif 2 of Escherichia coli alanyl-tRNA synthetase.
    Filley SJ; Hill KA
    Arch Biochem Biophys; 1993 Nov; 307(1):46-51. PubMed ID: 8239663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allosteric interaction of nucleotides and tRNA(ala) with E. coli alanyl-tRNA synthetase.
    Dignam JD; Guo J; Griffith WP; Garbett NC; Holloway A; Mueser T
    Biochemistry; 2011 Nov; 50(45):9886-900. PubMed ID: 21985608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability of Escherichia coli alanyl-tRNA synthetase quaternary structure under increased pressure.
    Sood SM; Hill KA; Slattery CW
    Arch Biochem Biophys; 1997 Oct; 346(2):322-3. PubMed ID: 9343380
    [No Abstract]   [Full Text] [Related]  

  • 6. Binding of Escherichia coli primary replicative helicase DnaB protein to single-stranded DNA. Long-range allosteric conformational changes within the protein hexamer.
    Jezewska MJ; Kim US; Bujalowski W
    Biochemistry; 1996 Feb; 35(7):2129-45. PubMed ID: 8652555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cysteine in the C-terminal region of alanyl-tRNA synthetase is important for aminoacylation activity.
    Wu MX; Filley SJ; Xiong J; Lee JJ; Hill KA
    Biochemistry; 1994 Oct; 33(40):12260-6. PubMed ID: 7918446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ordering of lipid A-monophosphate clusters in aqueous solutions.
    Faunce CA; Reichelt H; Quitschau P; Paradies HH
    J Chem Phys; 2007 Sep; 127(11):115103. PubMed ID: 17887884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A continuous spectrophotometric assay for the aminoacylation of transfer RNA by alanyl-transfer RNA synthetase.
    Wu MX; Hill KA
    Anal Biochem; 1993 Jun; 211(2):320-3. PubMed ID: 8317708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Domain-structure of large monomeric alanyl-tRNA synthetase from Bombyx mori: evidence of a single catalytic domain.
    Nishio K; Kawakami M
    Nucleic Acids Symp Ser; 1984; (15):135-8. PubMed ID: 6522283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution structure of the complex between CR2 SCR 1-2 and C3d of human complement: an X-ray scattering and sedimentation modelling study.
    Gilbert HE; Eaton JT; Hannan JP; Holers VM; Perkins SJ
    J Mol Biol; 2005 Feb; 346(3):859-73. PubMed ID: 15713468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative binding of zinc to an aminoacyl-tRNA synthetase.
    Wu MX; Filley SJ; Hill KA
    Biochem Biophys Res Commun; 1994 Jun; 201(3):1079-83. PubMed ID: 8024549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct domains of tRNA synthetase recognize the same base pair.
    Beebe K; Mock M; Merriman E; Schimmel P
    Nature; 2008 Jan; 451(7174):90-3. PubMed ID: 18172502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The invariant arginine in motif 2 of Escherichia coli alanyl-tRNA synthetase is important for catalysis but not for substrate binding.
    Lu Y; Hill KA
    J Biol Chem; 1994 Apr; 269(16):12137-41. PubMed ID: 8163518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guanidine hydrochloride mediated denaturation of E. coli Alanyl-tRNA synthetase: identification of an inactive dimeric intermediate.
    Banerjee B; Banerjee R
    Protein J; 2014 Apr; 33(2):119-27. PubMed ID: 24493149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biophysical Characterization of Interaction between E. coli Alanyl-tRNA Synethase with its Promoter DNA.
    Banerjee B; Ganguli S; Banerjee R
    Protein Pept Lett; 2020; 27(7):635-648. PubMed ID: 31686635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Static and dynamic light scattering approach to the hydration of hemoglobin and its supertetramers in the presence of osmolites.
    Arosio D; Kwansa HE; Gering H; Piszczek G; Bucci E
    Biopolymers; 2002 Jan; 63(1):1-11. PubMed ID: 11754343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheological and light scattering properties of flaxseed polysaccharide aqueous solutions.
    Goh KK; Pinder DN; Hall CE; Hemar Y
    Biomacromolecules; 2006 Nov; 7(11):3098-103. PubMed ID: 17096537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate specificity and catalysis by the editing active site of Alanyl-tRNA synthetase from Escherichia coli.
    Pasman Z; Robey-Bond S; Mirando AC; Smith GJ; Lague A; Francklyn CS
    Biochemistry; 2011 Mar; 50(9):1474-82. PubMed ID: 21241052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacteriophage phiNS11: a lipid-containing phage of acidophilic thermophilic bacteria. IV. Sedimentation coefficient, diffusion coefficient, partial specific volume, and particle weight of the phage.
    Sakaki Y; Maeda T; Oshima T
    J Biochem; 1979 May; 85(5):1205-11. PubMed ID: 447614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.