BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8645008)

  • 41. Trypsin cleavage of human cystathionine beta-synthase into an evolutionarily conserved active core: structural and functional consequences.
    Kery V; Poneleit L; Kraus JP
    Arch Biochem Biophys; 1998 Jul; 355(2):222-32. PubMed ID: 9675031
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of glutamate 344 as the catalytic residue in the active site of pig heart CoA transferase.
    Rochet JC; Bridger WA
    Protein Sci; 1994 Jun; 3(6):975-81. PubMed ID: 7915164
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The amino acid sequence of glutathione transferase from Proteus mirabilis, a prototype of a new class of enzymes.
    Mignogna G; Allocati N; Aceto A; Piccolomini R; Di Ilio C; Barra D; Martini F
    Eur J Biochem; 1993 Feb; 211(3):421-5. PubMed ID: 8436105
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Immunologic and physicochemical evidence for conformational changes occurring on conversion of human mast cell tryptase from active tetramer to inactive monomer. Production of monoclonal antibodies recognizing active tryptase.
    Schwartz LB; Bradford TR; Lee DC; Chlebowski JF
    J Immunol; 1990 Mar; 144(6):2304-11. PubMed ID: 2179409
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Identification and characterization of hydrophobic ligand binding region in glutathione S-transferase P].
    Nishihira J
    Hokkaido Igaku Zasshi; 1993 Jan; 68(1):54-64. PubMed ID: 8444404
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Conformational states of human placental glutathione transferase as probed by limited proteolysis.
    Lo Bello M; Pastore A; Petruzzelli R; Parker MW; Wilce MC; Federici G; Ricci G
    Biochem Biophys Res Commun; 1993 Jul; 194(2):804-10. PubMed ID: 8343164
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dimers of porcine skeletal muscle lactate dehydrogenase produced by limited proteolysis during reassociation are enzymatically active in the presence of stabilizing salt.
    Girg R; Jaenicke R; Rudolph R
    Biochem Int; 1983 Oct; 7(4):433-41. PubMed ID: 6679740
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural studies of a human pi class glutathione S-transferase. Photoaffinity labeling of the active site and target size analysis.
    Whalen R; Kempner ES; Boyer TD
    Biochem Pharmacol; 1996 Jul; 52(2):281-8. PubMed ID: 8694853
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Purification and characterization of a novel glutathione S-transferase from Asaphis dichotoma.
    Yang Hl; Nie Lj; Zhu Sg; Zhou Xw
    Arch Biochem Biophys; 2002 Jul; 403(2):202-8. PubMed ID: 12139969
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simple purification and secondary structure evaluation of Sendai virus neuraminidase water soluble fragment.
    Baiocchi M; Pescarmona M; Gallina A; Dallocchio F; Tomasi M
    Biochem Mol Biol Int; 1993 Oct; 31(2):389-98. PubMed ID: 8275028
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inhibition of human placenta glutathione transferase P1-1 by calvatic acid.
    Caccuri AM; Ricci G; Desideri A; Buffa M; Fruttero R; Gasco A; Ascenzi P
    Biochem Mol Biol Int; 1994 Apr; 32(5):819-29. PubMed ID: 8069231
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Site-directed mutagenesis of the Proteus mirabilis glutathione transferase B1-1 G-site.
    Casalone E; Allocati N; Ceccarelli I; Masulli M; Rossjohn J; Parker MW; Di Ilio C
    FEBS Lett; 1998 Feb; 423(2):122-4. PubMed ID: 9512342
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanism of dimer formation of the 90-kDa heat-shock protein.
    Nemoto T; Ohara-Nemoto Y; Ota M; Takagi T; Yokoyama K
    Eur J Biochem; 1995 Oct; 233(1):1-8. PubMed ID: 7588731
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional and structural membrane topology of rat liver microsomal glutathione transferase.
    Andersson C; Weinander R; Lundqvist G; DePierre JW; Morgenstern R
    Biochim Biophys Acta; 1994 Feb; 1204(2):298-304. PubMed ID: 8142472
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Glutamic acid-65 is an essential residue for catalysis in Proteus mirabilis glutathione S-transferase B1-1.
    Allocati N; Masulli M; Casalone E; Santucci S; Favaloro B; Parker MW; Di Ilio C
    Biochem J; 2002 Apr; 363(Pt 1):189-93. PubMed ID: 11903062
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Crystal structure of a murine glutathione S-transferase in complex with a glutathione conjugate of 4-hydroxynon-2-enal in one subunit and glutathione in the other: evidence of signaling across the dimer interface.
    Xiao B; Singh SP; Nanduri B; Awasthi YC; Zimniak P; Ji X
    Biochemistry; 1999 Sep; 38(37):11887-94. PubMed ID: 10508391
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Glutathione S-transferases from the white-rot fungus, Phanerochaete chrysosporium.
    Dowd CA; Buckley CM; Sheehan D
    Biochem J; 1997 May; 324 ( Pt 1)(Pt 1):243-8. PubMed ID: 9164863
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrostatic interactions affecting the active site of class sigma glutathione S-transferase.
    Stevens JM; Armstrong RN; Dirr HW
    Biochem J; 2000 Apr; 347 Pt 1(Pt 1):193-7. PubMed ID: 10727418
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of anaerobic environment on the glutathione transferase isoenzymatic pattern in Proteus mirabilis.
    Allocati N; Aceto A; Cellini L; Masulli M; Dragani B; Petruzzelli R; Di Ilio C
    FEMS Microbiol Lett; 1997; 147(1):157-62. PubMed ID: 9453936
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cleavage of the Lys196-Ser197 bond of prolyl oligopeptidase: enhanced catalytic activity for one of the two active enzyme forms.
    Polgár L; Patthy A
    Biochemistry; 1992 Nov; 31(44):10769-73. PubMed ID: 1420194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.