These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 8645010)

  • 1. Kinetic characterization of human immunodeficiency virus type 1 protease: determination of inhibitor rate constants during dynamic monomer-dimer interconversion.
    Morelock MM; Graham ET; Erdman D; Pargellis CA
    Arch Biochem Biophys; 1996 Apr; 328(2):317-23. PubMed ID: 8645010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociation and association of the HIV-1 protease dimer subunits: equilibria and rates.
    Darke PL; Jordan SP; Hall DL; Zugay JA; Shafer JA; Kuo LC
    Biochemistry; 1994 Jan; 33(1):98-105. PubMed ID: 8286367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of interaction kinetic constants for HIV-1 protease inhibitors using optical biosensor technology.
    Markgren PO; Lindgren MT; Gertow K; Karlsson R; Hämäläinen M; Danielson UH
    Anal Biochem; 2001 Apr; 291(2):207-18. PubMed ID: 11401294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of kinetic rate constants for the binding of inhibitors to HIV-1 protease and for the association and dissociation of active homodimer.
    Pargellis CA; Morelock MM; Graham ET; Kinkade P; Pav S; Lubbe K; Lamarre D; Anderson PC
    Biochemistry; 1994 Oct; 33(41):12527-34. PubMed ID: 7918476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic assay for HIV proteinase subunit dissociation.
    Kuzmic P
    Biochem Biophys Res Commun; 1993 Mar; 191(3):998-1003. PubMed ID: 8466539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved structure-activity relationship analysis of HIV-1 protease inhibitors using interaction kinetic data.
    Shuman CF; Vrang L; Danielson UH
    J Med Chem; 2004 Nov; 47(24):5953-61. PubMed ID: 15537350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the pH-dependencies of the association and dissociation kinetics of HIV-1 protease inhibitors.
    Gossas T; Danielson UH
    J Mol Recognit; 2003; 16(4):203-12. PubMed ID: 12898670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptidomimetic inhibitors complexed with HIV-1 protease: crystallisation for X-ray diffraction studies.
    Dohnálek J; Hasek J; Brynda J; Fábry M; Sedlácek J; Konvalinka J; Hradilek M; Soucek M; Adams MJ; Naylor CE
    Gen Physiol Biophys; 1998 Jun; 17 Suppl 1():9-11. PubMed ID: 9789742
    [No Abstract]   [Full Text] [Related]  

  • 9. Systematic mutational analysis of the active-site threonine of HIV-1 proteinase: rethinking the "fireman's grip" hypothesis.
    Strisovsky K; Tessmer U; Langner J; Konvalinka J; Kräusslich HG
    Protein Sci; 2000 Sep; 9(9):1631-41. PubMed ID: 11045610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A folding inhibitor of the HIV-1 protease.
    Broglia RA; Provasi D; Vasile F; Ottolina G; Longhi R; Tiana G
    Proteins; 2006 Mar; 62(4):928-33. PubMed ID: 16385559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multidrug resistance to HIV-1 protease inhibition requires cooperative coupling between distal mutations.
    Ohtaka H; Schön A; Freire E
    Biochemistry; 2003 Nov; 42(46):13659-66. PubMed ID: 14622012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimer disruption and monomer sequestration by alkyl tripeptides are successful strategies for inhibiting wild-type and multidrug-resistant mutated HIV-1 proteases.
    Bannwarth L; Rose T; Dufau L; Vanderesse R; Dumond J; Jamart-Grégoire B; Pannecouque C; De Clercq E; Reboud-Ravaux M
    Biochemistry; 2009 Jan; 48(2):379-87. PubMed ID: 19105629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the substrate envelope hypothesis for inhibitors of HIV-1 protease.
    Chellappan S; Kairys V; Fernandes MX; Schiffer C; Gilson MK
    Proteins; 2007 Aug; 68(2):561-7. PubMed ID: 17474129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A major role for a set of non-active site mutations in the development of HIV-1 protease drug resistance.
    Muzammil S; Ross P; Freire E
    Biochemistry; 2003 Jan; 42(3):631-8. PubMed ID: 12534275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coarse-grained molecular dynamics of ligands binding into protein: The case of HIV-1 protease inhibitors.
    Li D; Liu MS; Ji B; Hwang K; Huang Y
    J Chem Phys; 2009 Jun; 130(21):215102. PubMed ID: 19508101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic properties of saquinavir-resistant mutants of human immunodeficiency virus type 1 protease and their implications in drug resistance in vivo.
    Ermolieff J; Lin X; Tang J
    Biochemistry; 1997 Oct; 36(40):12364-70. PubMed ID: 9315877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray structure and conformational dynamics of the HIV-1 protease in complex with the inhibitor SDZ283-910: agreement of time-resolved spectroscopy and molecular dynamics simulations.
    Ringhofer S; Kallen J; Dutzler R; Billich A; Visser AJ; Scholz D; Steinhauser O; Schreiber H; Auer M; Kungl AJ
    J Mol Biol; 1999 Mar; 286(4):1147-59. PubMed ID: 10047488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase.
    Kuzmic P
    Anal Biochem; 1996 Jun; 237(2):260-73. PubMed ID: 8660575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational proteomics analysis of binding mechanisms and molecular signatures of the HIV-1 protease drugs.
    Verkhivker G
    Artif Intell Med; 2009; 45(2-3):197-206. PubMed ID: 18926674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of flanking sequences on the dimer stability of human immunodeficiency virus type 1 protease.
    Wondrak EM; Louis JM
    Biochemistry; 1996 Oct; 35(39):12957-62. PubMed ID: 8841142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.