BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 8645193)

  • 1. Effect of substituent on the thermodynamics of D-glucopyranoside binding to concanavalin A, pea (Pisum sativum) lectin and lentil (Lens culinaris) lectin.
    Schwarz FP; Misquith S; Surolia A
    Biochem J; 1996 May; 316 ( Pt 1)(Pt 1):123-9. PubMed ID: 8645193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics of monosaccharide binding to concanavalin A, pea (Pisum sativum) lectin, and lentil (Lens culinaris) lectin.
    Schwarz FP; Puri KD; Bhat RG; Surolia A
    J Biol Chem; 1993 Apr; 268(11):7668-77. PubMed ID: 8463297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential solvation of "core" trimannoside complexes of the Dioclea grandiflora lectin and concanavalin A detected by primary solvent isotope effects in isothermal titration microcalorimetry.
    Dam TK; Oscarson S; Sacchettini JC; Brewer CF
    J Biol Chem; 1998 Dec; 273(49):32826-32. PubMed ID: 9830029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calorimetric analysis of the binding of lectins with overlapping carbohydrate-binding ligand specificities.
    Chervenak MC; Toone EJ
    Biochemistry; 1995 Apr; 34(16):5685-95. PubMed ID: 7727428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton and deuteron nuclear magnetic relaxation dispersion studies of Ca2+-Mn2+-lentil lectin and Ca2+-Mn2+-pea lectin: evidence for a site of solvent exchange in common with concanavalin A.
    Bhattacharyya L; Brewer CF; Brown RD; Koenig SH
    Biochemistry; 1985 Sep; 24(19):4985-90. PubMed ID: 4074670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics of binding of the core trimannoside of asparagine-linked carbohydrates and deoxy analogs to Dioclea grandiflora lectin.
    Dam TK; Oscarson S; Brewer CF
    J Biol Chem; 1998 Dec; 273(49):32812-7. PubMed ID: 9830027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The monosaccharide binding site of lentil lectin: an X-ray and molecular modelling study.
    Loris R; Casset F; Bouckaert J; Pletinckx J; Dao-Thi MH; Poortmans F; Imberty A; Perez S; Wyns L
    Glycoconj J; 1994 Dec; 11(6):507-17. PubMed ID: 7696853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic studies on the interaction of water-soluble porphyrins with the glucose/mannose-specific lectin from garden pea (Pisum sativum).
    Kavitha M; Swamy MJ
    IUBMB Life; 2006 Dec; 58(12):720-30. PubMed ID: 17424911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics of lectin-carbohydrate interactions. Binding of the core trimannoside of asparagine-linked carbohydrates and deoxy analogs to concanavalin A.
    Gupta D; Dam TK; Oscarson S; Brewer CF
    J Biol Chem; 1997 Mar; 272(10):6388-92. PubMed ID: 9045661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of metal ion substitutions in concanavalin A on the binding of carbohydrates and on thermal stability.
    Sanders JN; Chenoweth SA; Schwarz FP
    J Inorg Biochem; 1998 May; 70(2):71-82. PubMed ID: 9666569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of multivalent carbohydrates to concanavalin A and Dioclea grandiflora lectin. Thermodynamic analysis of the "multivalency effect".
    Dam TK; Roy R; Das SK; Oscarson S; Brewer CF
    J Biol Chem; 2000 May; 275(19):14223-30. PubMed ID: 10799500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of substituents on the thermodynamics of D-galactopyranoside binding to winged bean (Psophocarpus tetragonolobus) basic lectin.
    Swaminathan CP; Gupta D; Sharma V; Surolia A
    Biochemistry; 1997 Oct; 36(43):13428-34. PubMed ID: 9341236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The complete amino acid sequence of the alpha-subunit of pea lectin, Pisum sativum.
    Richardson C; Behnke WD; Freisheim JH; Blumenthal KM
    Biochim Biophys Acta; 1978 Dec; 537(2):310-9. PubMed ID: 728447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of high-affinity, hydrophobic monosaccharide derivatives and study of their interaction with concanavalin A, the pea, the lentil, and fava bean lectins.
    Loganathan D; Osborne SE; Glick GD; Goldstein IJ
    Arch Biochem Biophys; 1992 Dec; 299(2):268-74. PubMed ID: 1444465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the lectin from Dioclea grandiflora complexed with core trimannoside of asparagine-linked carbohydrates.
    Rozwarski DA; Swami BM; Brewer CF; Sacchettini JC
    J Biol Chem; 1998 Dec; 273(49):32818-25. PubMed ID: 9830028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energetics of lectin-carbohydrate binding. A microcalorimetric investigation of concanavalin A-oligomannoside complexation.
    Williams BA; Chervenak MC; Toone EJ
    J Biol Chem; 1992 Nov; 267(32):22907-11. PubMed ID: 1429640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetics of carbohydrate binding by a 14 kDa S-type mammalian lectin.
    Ramkumar R; Surolia A; Podder SK
    Biochem J; 1995 May; 308 ( Pt 1)(Pt 1):237-41. PubMed ID: 7755570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of monosaccharide and disaccharide binding to Erythrina corallodendron lectin.
    Surolia A; Sharon N; Schwarz FP
    J Biol Chem; 1996 Jul; 271(30):17697-703. PubMed ID: 8663419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isothermal titration calorimetric studies on the binding of deoxytrimannoside derivatives with artocarpin: implications for a deep-seated combining site in lectins.
    Rani PG; Bachhawat K; Reddy GB; Oscarson S; Surolia A
    Biochemistry; 2000 Sep; 39(35):10755-60. PubMed ID: 10978160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular modelling of protein-carbohydrate interactions. Docking of monosaccharides in the binding site of concanavalin A.
    Imberty A; Hardman KD; Carver JP; PĂ©rez S
    Glycobiology; 1991 Dec; 1(6):631-42. PubMed ID: 1822243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.