BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 8645508)

  • 1. Quantitative risk assessment and the limitations of the linearized multistage model.
    Lovell DP; Thomas G
    Hum Exp Toxicol; 1996 Feb; 15(2):87-104. PubMed ID: 8645508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The linearized multistage model and the future of quantitative risk assessment.
    Crump KS
    Hum Exp Toxicol; 1996 Oct; 15(10):787-98. PubMed ID: 8906427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An evaluation of benchmark dose methodology for non-cancer continuous-data health effects in animals due to exposures to dioxin (TCDD).
    Gaylor DW; Aylward LL
    Regul Toxicol Pharmacol; 2004 Aug; 40(1):9-17. PubMed ID: 15265602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of cancer slope factors using different statistical approaches.
    Subramaniam RP; White P; Cogliano VJ
    Risk Anal; 2006 Jun; 26(3):825-30. PubMed ID: 16834636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing uncertainty in risk assessment by using specific knowledge to replace default options.
    McClellan RO
    Drug Metab Rev; 1996; 28(1-2):149-79. PubMed ID: 8744594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chloroform mode of action: implications for cancer risk assessment.
    Golden RJ; Holm SE; Robinson DE; Julkunen PH; Reese EA
    Regul Toxicol Pharmacol; 1997 Oct; 26(2):142-55. PubMed ID: 9356278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Risk assessment of 2,3,7,8-TCDD using a biologically based cancer model: a reevaluation of the Kociba et al. bioassay using 1978 and 1990 histopathology criteria.
    Paustenbach DJ; Layard MW; Wenning RJ; Keenan RE
    J Toxicol Environ Health; 1991 Sep; 34(1):11-26. PubMed ID: 1653856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A trichloroethylene risk assessment using a Monte Carlo analysis of parameter uncertainty in conjunction with physiologically-based pharmacokinetic modeling.
    Cronin WJ; Oswald EJ; Shelley ML; Fisher JW; Flemming CD
    Risk Anal; 1995 Oct; 15(5):555-65. PubMed ID: 7501875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scientific analysis of the proposed uses of the T25 dose descriptor in chemical carcinogen regulation.
    Roberts RA; Crump KS; Lutz WK; Wiegand HJ; Williams GM; Harrison PT; Purchase IF
    Arch Toxicol; 2001 Nov; 75(9):507-12. PubMed ID: 11760810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significant shortcomings of the U.S. Environmental Protection Agency's latest draft risk characterization for dioxin-like compounds.
    Starr TB
    Toxicol Sci; 2001 Nov; 64(1):7-13. PubMed ID: 11606796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Risk from low-dose exposures.
    Portier CJ; Lucier GW; Edler L
    Science; 1994 Nov; 266(5188):1141-2. PubMed ID: 7973685
    [No Abstract]   [Full Text] [Related]  

  • 12. A simple method for quantitative risk assessment of non-threshold carcinogens based on the dose descriptor T25.
    Sanner T; Dybing E; Willems MI; Kroese ED
    Pharmacol Toxicol; 2001 Jun; 88(6):331-41. PubMed ID: 11453374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear-No-Threshold Default Assumptions for Noncancer and Nongenotoxic Cancer Risks: A Mathematical and Biological Critique.
    Bogen KT
    Risk Anal; 2016 Mar; 36(3):589-604. PubMed ID: 26249816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents.
    Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reassessing benzene risks using internal doses and Monte-Carlo uncertainty analysis.
    Cox LA
    Environ Health Perspect; 1996 Dec; 104 Suppl 6(Suppl 6):1413-29. PubMed ID: 9118928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human respiratory tract cancer risks of inhaled formaldehyde: dose-response predictions derived from biologically-motivated computational modeling of a combined rodent and human dataset.
    Conolly RB; Kimbell JS; Janszen D; Schlosser PM; Kalisak D; Preston J; Miller FJ
    Toxicol Sci; 2004 Nov; 82(1):279-96. PubMed ID: 15254341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of a benchmark dose in the presence or absence of hormesis using posterior averaging.
    Kim SB; Bartell SM; Gillen DL
    Risk Anal; 2015 Mar; 35(3):396-408. PubMed ID: 25384940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On use of the multistage dose-response model for assessing laboratory animal carcinogenicity.
    Nitcheva DK; Piegorsch WW; West RW
    Regul Toxicol Pharmacol; 2007 Jul; 48(2):135-47. PubMed ID: 17490794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carcinogenic effects of benzene--a status update and research needs to improve risk assessments: US EPA perspective. Environmental Protection Agency.
    Sonawane B; Bayliss D; Valcovic L; Chen C; Rodan B; Farland W
    J Toxicol Environ Health A; 2000 Nov; 61(5-6):471-2. PubMed ID: 11086954
    [No Abstract]   [Full Text] [Related]  

  • 20. Mathematical models in quantitative assessment of carcinogenic risk.
    Park CN
    Regul Toxicol Pharmacol; 1989 Jun; 9(3):236-43. PubMed ID: 2756171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.