BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 8645694)

  • 1. Plant glyoxysomal but not mitochondrial malate dehydrogenase can fold without chaperone assistance.
    Gietl C; Seidel C; Svendsen I
    Biochim Biophys Acta; 1996 May; 1274(1-2):48-58. PubMed ID: 8645694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escherichia coli chaperonins cpn60 (groEL) and cpn10 (groES) do not catalyse the refolding of mitochondrial malate dehydrogenase.
    Miller AD; Maghlaoui K; Albanese G; Kleinjan DA; Smith C
    Biochem J; 1993 Apr; 291 ( Pt 1)(Pt 1):139-44. PubMed ID: 8097086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimal and optimal mechanisms for GroE-mediated protein folding.
    Ben-Zvi AP; Chatellier J; Fersht AR; Goloubinoff P
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15275-80. PubMed ID: 9860959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding, encapsulation and ejection: substrate dynamics during a chaperonin-assisted folding reaction.
    Ranson NA; Burston SG; Clarke AR
    J Mol Biol; 1997 Mar; 266(4):656-64. PubMed ID: 9102459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refolding and recognition of mitochondrial malate dehydrogenase by Escherichia coli chaperonins cpn 60 (groEL) and cpn10 (groES).
    Hutchinson JP; el-Thaher TS; Miller AD
    Biochem J; 1994 Sep; 302 ( Pt 2)(Pt 2):405-10. PubMed ID: 7916564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the role of symmetrical and asymmetrical chaperonin complexes in assisted protein folding.
    Hayer-Hartl MK; Ewalt KL; Hartl FU
    Biol Chem; 1999 May; 380(5):531-40. PubMed ID: 10384959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of a stable folding intermediate which can be rescued by the chaperonins GroEL and GroES.
    Peralta D; Hartman DJ; Hoogenraad NJ; Høj PB
    FEBS Lett; 1994 Feb; 339(1-2):45-9. PubMed ID: 7906229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substoichiometric amounts of the molecular chaperones GroEL and GroES prevent thermal denaturation and aggregation of mammalian mitochondrial malate dehydrogenase in vitro.
    Hartman DJ; Surin BP; Dixon NE; Hoogenraad NJ; Høj PB
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2276-80. PubMed ID: 8096339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a molecular chaperone-assisted protein folding bioreactor.
    Kohler RJ; Preuss M; Miller AD
    Biotechnol Prog; 2000; 16(4):671-5. PubMed ID: 10933845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The stability and hydrophobicity of cytosolic and mitochondrial malate dehydrogenases and their relation to chaperonin-assisted folding.
    Staniforth RA; Cortés A; Burston SG; Atkinson T; Holbrook JJ; Clarke AR
    FEBS Lett; 1994 May; 344(2-3):129-35. PubMed ID: 7910565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding of malate dehydrogenase inside the GroEL-GroES cavity.
    Chen J; Walter S; Horwich AL; Smith DL
    Nat Struct Biol; 2001 Aug; 8(8):721-8. PubMed ID: 11473265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GroEL of the nitrogen-fixing cyanobacterium Anabaena sp. strain L-31 exhibits GroES and ATP-independent refolding activity.
    Potnis AA; Rajaram H; Apte SK
    J Biochem; 2016 Mar; 159(3):295-304. PubMed ID: 26449235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling between protein folding and allostery in the GroE chaperonin system.
    Yifrach O; Horovitz A
    Proc Natl Acad Sci U S A; 2000 Feb; 97(4):1521-4. PubMed ID: 10677493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organelle and translocatable forms of glyoxysomal malate dehydrogenase. The effect of the N-terminal presequence.
    Cox B; Chit MM; Weaver T; Gietl C; Bailey J; Bell E; Banaszak L
    FEBS J; 2005 Feb; 272(3):643-54. PubMed ID: 15670147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-free synthesis of watermelon glyoxysomal malate dehydrogenase: a comparison with the mitochondrial isoenzyme.
    Hock B; Gietl C
    Ann N Y Acad Sci; 1982; 386():350-76. PubMed ID: 6178340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective ATPase activity and moderate chaperonin-cochaperonin interaction are important for the functional single-ring chaperonin system.
    Illingworth M; Salisbury J; Li W; Lin D; Chen L
    Biochem Biophys Res Commun; 2015 Oct; 466(1):15-20. PubMed ID: 26271593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of nucleotides and mitochondrial chaperonin 10 on the structure and chaperone activity of mitochondrial chaperonin 60.
    Levy-Rimler G; Viitanen P; Weiss C; Sharkia R; Greenberg A; Niv A; Lustig A; Delarea Y; Azem A
    Eur J Biochem; 2001 Jun; 268(12):3465-72. PubMed ID: 11422376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of the GroE chaperonin requirements for sequentially and structurally homologous malate dehydrogenases: the importance of folding kinetics and solution environment.
    Tieman BC; Johnston MF; Fisher MT
    J Biol Chem; 2001 Nov; 276(48):44541-50. PubMed ID: 11551947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Location of a folding protein and shape changes in GroEL-GroES complexes imaged by cryo-electron microscopy.
    Chen S; Roseman AM; Hunter AS; Wood SP; Burston SG; Ranson NA; Clarke AR; Saibil HR
    Nature; 1994 Sep; 371(6494):261-4. PubMed ID: 7915827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased efficiency of GroE-assisted protein folding by manganese ions.
    Diamant S; Azem A; Weiss C; Goloubinoff P
    J Biol Chem; 1995 Nov; 270(47):28387-91. PubMed ID: 7499341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.