These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 864618)
1. Site and mode of adrenaline action on chloride transport across the rabbit corneal epithelium. Klyce SD; Wong RK J Physiol; 1977 Apr; 266(3):777-99. PubMed ID: 864618 [TBL] [Abstract][Full Text] [Related]
2. Active chloride transport in the in vitro opercular skin of a teleost (Fundulus heteroclitus), a gill-like epithelium rich in chloride cells. Degnan KJ; Karnaky KJ; Zadunaisky JA J Physiol; 1977 Sep; 271(1):155-91. PubMed ID: 915831 [TBL] [Abstract][Full Text] [Related]
3. Effect of loop diuretics on bullfrog cornea epithelium. Nagel W; Carrasquer G Am J Physiol; 1989 Apr; 256(4 Pt 1):C750-5. PubMed ID: 2784943 [TBL] [Abstract][Full Text] [Related]
4. Cl secretagogues reduce basolateral K permeability in the rabbit corneal epithelium. Candia OA; Zamudio AC J Membr Biol; 2002 Dec; 190(3):197-205. PubMed ID: 12533785 [TBL] [Abstract][Full Text] [Related]
6. Intracellular activities of chloride, potassium and sodium ions in rabbit corneal epithelium. Festen CM; Slegers JF; Van Os CH Biochim Biophys Acta; 1983 Jul; 732(2):394-404. PubMed ID: 6307370 [TBL] [Abstract][Full Text] [Related]
7. Mode of inhibition of active chloride transport in the frog cornea by furosemide. Patarca R; Candia OA; Reinach PS Am J Physiol; 1983 Dec; 245(6):F660-9. PubMed ID: 6606983 [TBL] [Abstract][Full Text] [Related]
8. Studies of transepithelial Cl- transport in cultured cauda epididymal cells of rats by the short-circuit current method. Leung AY; Wong PY J Physiol; 1992 Nov; 457():391-406. PubMed ID: 1297839 [TBL] [Abstract][Full Text] [Related]
9. Amphotericin B-induced active transport of K+ and the Na+-K+ flux ratio in frog corneal epithelium. Candia OA; Reinach PS; Alvarez L Am J Physiol; 1984 Nov; 247(5 Pt 1):C454-61. PubMed ID: 6093573 [TBL] [Abstract][Full Text] [Related]
10. Intracellular ion activities and Cl-transport mechanisms in bullfrog corneal epithelium. Reuss L; Reinach P; Weinman SA; Grady TP Am J Physiol; 1983 May; 244(5):C336-47. PubMed ID: 6601915 [TBL] [Abstract][Full Text] [Related]
11. Cellular and paracellular pathway resistances in the "tight" Cl- -secreting epithelium of rabbit cornea. Marshall WS; Klyce SD J Membr Biol; 1983; 73(3):275-82. PubMed ID: 6864779 [TBL] [Abstract][Full Text] [Related]
12. Transport of Na, Cl, and water by the rabbit corneal epithelium at resting potential. Klyce SD Am J Physiol; 1975 May; 228(5):1446-52. PubMed ID: 165732 [TBL] [Abstract][Full Text] [Related]
13. Effects of tryptamine on active sodium and chloride transport in the isolated bullfrog cornea. Reinach PS; Candia OA Biochim Biophys Acta; 1978 Jul; 510(2):327-38. PubMed ID: 667048 [TBL] [Abstract][Full Text] [Related]
14. The origin of the basal cell potential in frog corneal epithelium. Akaike N J Physiol; 1971 Dec; 219(1):57-75. PubMed ID: 5316662 [TBL] [Abstract][Full Text] [Related]
15. Role of cations, anions and carbonic anhydrase in fluid transport across rabbit corneal endothelium. Fischbarg J; Lim JJ J Physiol; 1974 Sep; 241(3):647-75. PubMed ID: 4215880 [TBL] [Abstract][Full Text] [Related]
16. Characterization of active ion transport across primary rabbit corneal epithelial cell layers (RCrECL) cultured at an air-interface. Chang-Lin JE; Kim KJ; Lee VH Exp Eye Res; 2005 Jun; 80(6):827-36. PubMed ID: 15939039 [TBL] [Abstract][Full Text] [Related]
17. The relative contribution of K and Cl to the total increase of membrane conductance produced by adrenaline on the smooth muscle of guinea-pig Taenia coli. Ohashi H J Physiol; 1971 Jan; 212(2):561-75. PubMed ID: 5548023 [TBL] [Abstract][Full Text] [Related]
18. Membrane potential, resistance, and intercellular communication in the lacrimal gland: effects of acetylcholine and adrenaline. Iwatsuki N; Petersen OH J Physiol; 1978 Feb; 275():507-20. PubMed ID: 633148 [TBL] [Abstract][Full Text] [Related]