BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 864690)

  • 1. Cold-induced hemolysis in a hypertonic milieu.
    Green FA; Jung CY
    J Membr Biol; 1977 May; 33(3-4):249-62. PubMed ID: 864690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypertonic cryohemolysis and the cytoskeletal system.
    Green FA; Jung CY; Cuppoletti J; Owens N
    Biochim Biophys Acta; 1981 Nov; 648(2):225-30. PubMed ID: 7306538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of choline phospholipids in hypertonic cryohemolysis.
    Green LA; Hui HL; Green FA; Jung CY; Pudlak WS
    Cryobiology; 1983 Feb; 20(1):25-9. PubMed ID: 6831908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypertonic cryohemolysis of pathologic red blood cells.
    Streichman S; Kahana E; Tatarsky I
    Am J Hematol; 1985 Dec; 20(4):373-81. PubMed ID: 4073012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypertonic cryohemolysis of human red blood cells.
    Dubbelman TM; de Bruijne AW; Christianse K; van Steveninck J
    J Membr Biol; 1979 Nov; 50(3-4):225-40. PubMed ID: 513114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cooling rate on thermal shock hemolysis.
    Morris GJ; Farrant J
    Cryobiology; 1973 Jun; 10(2):119-25. PubMed ID: 4723502
    [No Abstract]   [Full Text] [Related]  

  • 7. Hypertonic cryohemolysis: ionophore and pH effects.
    Jung CY; Green FA
    J Membr Biol; 1978 Mar; 39(2-3):273-84. PubMed ID: 25342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The effect of chlorpromazine on the temperature and osmotic sensitivity of erythrocytes].
    Shpakova NM; Bondarenko VA
    Biokhimiia; 1991 Dec; 56(12):2125-30. PubMed ID: 1807402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cold shock hemolysis in human erythrocytes studied by spin probe method and freeze-fracture electron microscopy.
    Takahashi T; Noji S; Erbe EF; Steere RL; Kon H
    Biophys J; 1986 Feb; 49(2):403-10. PubMed ID: 3006813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal shock hemolysis in human red cells. I. The effects of temperature, time, and osmotic stress.
    Takahashi T; Williams RJ
    Cryobiology; 1983 Oct; 20(5):507-20. PubMed ID: 6627965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of membrane thermotropic properties on hypotonic hemolysis and hypertonic cryohemolysis of human red blood cells.
    Minetti M; Ceccarini M; Di Stasi AM
    J Cell Biochem; 1984; 25(2):61-72. PubMed ID: 6090481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Factors of avian erythrocyte fusion: changes in the state of plasma membrane induced by dimethylsulfoxide and temperature].
    Boiko NM; Bondarenko VA; Belous AM
    Biokhimiia; 1982 Jun; 47(6):896-903. PubMed ID: 7115803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship of hyperthermia-induced hemolysis of human erythrocytes to the thermal denaturation of membrane proteins.
    Lepock JR; Frey HE; Bayne H; Markus J
    Biochim Biophys Acta; 1989 Apr; 980(2):191-201. PubMed ID: 2930787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ceramide-enriched membrane domains in red blood cells and the mechanism of sphingomyelinase-induced hot-cold hemolysis.
    Montes LR; López DJ; Sot J; Bagatolli LA; Stonehouse MJ; Vasil ML; Wu BX; Hannun YA; Goñi FM; Alonso A
    Biochemistry; 2008 Oct; 47(43):11222-30. PubMed ID: 18826261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deformability and stability of erythrocytes in high-frequency electric fields down to subzero temperatures.
    Krueger M; Thom F
    Biophys J; 1997 Nov; 73(5):2653-66. PubMed ID: 9370459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermotropic lipid phase separations in human erythrocyte ghosts and cholesterol-enriched rat liver plasma membranes.
    Gordon LM; Mobley PW
    J Membr Biol; 1984; 79(1):75-86. PubMed ID: 6330365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influx of calcium ions into human erythrocytes during cold storage.
    Long C; Mouat B
    Biochem J; 1973 Mar; 132(3):559-70. PubMed ID: 4724590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-dependent vesiculation of human erythrocytes caused by hypertonic salt: a phenomenon involving lipid segregation.
    Araki T; Roelofsen B; Op den Kamp JA; Van Deenen LL
    Cryobiology; 1982 Aug; 19(4):353-61. PubMed ID: 7116899
    [No Abstract]   [Full Text] [Related]  

  • 19. The kinetics of resealing of washed erythrocyte ghosts.
    Johnson RM
    J Membr Biol; 1975 Jul; 22(3-4):231-53. PubMed ID: 808630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diminished spectrin extraction from ATP-depleted human erythrocytes. Evidence relating spectrin to changes in erythrocyte shape and deformability.
    Lux SE; John KM; Ukena TE
    J Clin Invest; 1978 Mar; 61(3):815-27. PubMed ID: 25286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.