These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 864690)

  • 1. Cold-induced hemolysis in a hypertonic milieu.
    Green FA; Jung CY
    J Membr Biol; 1977 May; 33(3-4):249-62. PubMed ID: 864690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypertonic cryohemolysis and the cytoskeletal system.
    Green FA; Jung CY; Cuppoletti J; Owens N
    Biochim Biophys Acta; 1981 Nov; 648(2):225-30. PubMed ID: 7306538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of choline phospholipids in hypertonic cryohemolysis.
    Green LA; Hui HL; Green FA; Jung CY; Pudlak WS
    Cryobiology; 1983 Feb; 20(1):25-9. PubMed ID: 6831908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypertonic cryohemolysis of pathologic red blood cells.
    Streichman S; Kahana E; Tatarsky I
    Am J Hematol; 1985 Dec; 20(4):373-81. PubMed ID: 4073012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypertonic cryohemolysis of human red blood cells.
    Dubbelman TM; de Bruijne AW; Christianse K; van Steveninck J
    J Membr Biol; 1979 Nov; 50(3-4):225-40. PubMed ID: 513114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cooling rate on thermal shock hemolysis.
    Morris GJ; Farrant J
    Cryobiology; 1973 Jun; 10(2):119-25. PubMed ID: 4723502
    [No Abstract]   [Full Text] [Related]  

  • 7. Hypertonic cryohemolysis: ionophore and pH effects.
    Jung CY; Green FA
    J Membr Biol; 1978 Mar; 39(2-3):273-84. PubMed ID: 25342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The effect of chlorpromazine on the temperature and osmotic sensitivity of erythrocytes].
    Shpakova NM; Bondarenko VA
    Biokhimiia; 1991 Dec; 56(12):2125-30. PubMed ID: 1807402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cold shock hemolysis in human erythrocytes studied by spin probe method and freeze-fracture electron microscopy.
    Takahashi T; Noji S; Erbe EF; Steere RL; Kon H
    Biophys J; 1986 Feb; 49(2):403-10. PubMed ID: 3006813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal shock hemolysis in human red cells. I. The effects of temperature, time, and osmotic stress.
    Takahashi T; Williams RJ
    Cryobiology; 1983 Oct; 20(5):507-20. PubMed ID: 6627965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of membrane thermotropic properties on hypotonic hemolysis and hypertonic cryohemolysis of human red blood cells.
    Minetti M; Ceccarini M; Di Stasi AM
    J Cell Biochem; 1984; 25(2):61-72. PubMed ID: 6090481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Factors of avian erythrocyte fusion: changes in the state of plasma membrane induced by dimethylsulfoxide and temperature].
    Boiko NM; Bondarenko VA; Belous AM
    Biokhimiia; 1982 Jun; 47(6):896-903. PubMed ID: 7115803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship of hyperthermia-induced hemolysis of human erythrocytes to the thermal denaturation of membrane proteins.
    Lepock JR; Frey HE; Bayne H; Markus J
    Biochim Biophys Acta; 1989 Apr; 980(2):191-201. PubMed ID: 2930787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ceramide-enriched membrane domains in red blood cells and the mechanism of sphingomyelinase-induced hot-cold hemolysis.
    Montes LR; López DJ; Sot J; Bagatolli LA; Stonehouse MJ; Vasil ML; Wu BX; Hannun YA; Goñi FM; Alonso A
    Biochemistry; 2008 Oct; 47(43):11222-30. PubMed ID: 18826261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deformability and stability of erythrocytes in high-frequency electric fields down to subzero temperatures.
    Krueger M; Thom F
    Biophys J; 1997 Nov; 73(5):2653-66. PubMed ID: 9370459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermotropic lipid phase separations in human erythrocyte ghosts and cholesterol-enriched rat liver plasma membranes.
    Gordon LM; Mobley PW
    J Membr Biol; 1984; 79(1):75-86. PubMed ID: 6330365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influx of calcium ions into human erythrocytes during cold storage.
    Long C; Mouat B
    Biochem J; 1973 Mar; 132(3):559-70. PubMed ID: 4724590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-dependent vesiculation of human erythrocytes caused by hypertonic salt: a phenomenon involving lipid segregation.
    Araki T; Roelofsen B; Op den Kamp JA; Van Deenen LL
    Cryobiology; 1982 Aug; 19(4):353-61. PubMed ID: 7116899
    [No Abstract]   [Full Text] [Related]  

  • 19. The kinetics of resealing of washed erythrocyte ghosts.
    Johnson RM
    J Membr Biol; 1975 Jul; 22(3-4):231-53. PubMed ID: 808630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diminished spectrin extraction from ATP-depleted human erythrocytes. Evidence relating spectrin to changes in erythrocyte shape and deformability.
    Lux SE; John KM; Ukena TE
    J Clin Invest; 1978 Mar; 61(3):815-27. PubMed ID: 25286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.