These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 864691)

  • 1. Study of amino and sulfhydryl sites in the sodium pathway in dog red blood cell membranes.
    Castranova V; Miles PR
    J Membr Biol; 1977 May; 33(3-4):263-79. PubMed ID: 864691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium permeability of dog red blood cell membranes. I. Identification of regulatory sites.
    Castranova V; Miles PR
    J Gen Physiol; 1976 May; 67(5):563-78. PubMed ID: 1271043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical modification of membranes. I. Effects of sulfhydryl and amino reactive reagents on anion and cation permeability of the human red blood cell.
    Knauf PA; Rothstein A
    J Gen Physiol; 1971 Aug; 58(2):190-210. PubMed ID: 5559622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on lithium transport across the red cell membrane. VI. Properties of a sulfhydryl group involved in ouabain-resistant Na+-Li+ (and Na+-Na+) exchange in human and bovine erythrocytes.
    Becker BF; Duhm J
    J Membr Biol; 1979 Dec; 51(3-4):287-310. PubMed ID: 231659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane water channels and SH-groups.
    Sha'afi RI; Feinstein MB
    Adv Exp Med Biol; 1977; 84():67-83. PubMed ID: 899955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passive cation movements in the Ehrlich ascites tumor cell: the effects of 2,4,6-trinitrobenzene sulfonic acid.
    Smith TC; Adams R
    J Cell Physiol; 1976 Jan; 87(1):53-62. PubMed ID: 1245558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of anion permeability by amphiphilic compounds in human red cell: evidence for an interaction of niflumic acid with the band 3 protein.
    Cousin JL; Motais R
    J Membr Biol; 1979 Apr; 46(2):125-53. PubMed ID: 376851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of organic anions through the erythrocyte membrane as K+-valinomycin complexes.
    Marinetti GV; Skarin A; Whitman P
    J Membr Biol; 1978 Apr; 40(2):143-55. PubMed ID: 660643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical modification of sodium channel surface charges in frog skeletal muscle by trinitrobenzene sulphonic acid.
    Cahalan MD; Pappone PA
    J Physiol; 1981 Dec; 321():127-39. PubMed ID: 6279821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of low electrolyte media on salt loss and hemolysis of mammalian red blood cells.
    Zeidler RB; Kim HD
    J Cell Physiol; 1979 Sep; 100(3):551-61. PubMed ID: 39943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of DTNB to band 3 in the human red cell membrane.
    Toon MR; Dorogi PL; Lukacovic MF; Solomon AK
    Biochim Biophys Acta; 1985 Aug; 818(2):158-70. PubMed ID: 2992587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on lithium transport across the red cell membrane. V. On the nature of the Na+-dependent Li+ countertransport system of mammalian erythrocytes.
    Duhm J; Becker BF
    J Membr Biol; 1979 Dec; 51(3-4):263-86. PubMed ID: 43898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of cytoskeletal proteins in the barrier function of the human erythrocyte membrane. I. Impairment of resealing and formation of aqueous pores in the ghost membrane after modification of SH groups.
    Klonk S; Deuticke B
    Biochim Biophys Acta; 1992 Apr; 1106(1):126-36. PubMed ID: 1581324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of anion exchange across the red cell membrane by band 3: interactions between stilbenedisulfonate and NAP-taurine binding sites.
    Macara IG; Cantley LC
    Biochemistry; 1981 Sep; 20(20):5695-701. PubMed ID: 7295699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of imidoesters, fluorodinitrobenzene and trinitrobenzenesulfonate on ion transport in human erythrocytes.
    Shaw A; Marinetti GV
    Chem Phys Lipids; 1980 Dec; 27(4):329-35. PubMed ID: 7448958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Potassium and anion transport and activity of the Na+-pump in the erythrocyte membrane: 3 different mechanisms of regulation by intracellular calcium].
    Orlov SN; Pokudin NI; Kotelevtsev IuV
    Biokhimiia; 1987 Aug; 52(8):1373-86. PubMed ID: 2444274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cation specificity of propranolol-induced changes in RBC membrane permeability: comparative effects in human, dog and cat erythrocytes.
    Müller-Soyano A; Glader BE
    J Cell Physiol; 1977 May; 91(2):317-21. PubMed ID: 558987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of Na-K-2Cl cotransport and bumetanide binding by ethacrynic acid, its analogues, and adducts.
    Palfrey HC; Leung S
    Am J Physiol; 1993 May; 264(5 Pt 1):C1270-7. PubMed ID: 8498486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demyelination as a test for a mobile Na channel modulator in frog node of Ranvier.
    Pappone PA; Cahalan MD
    Biophys J; 1985 Feb; 47(2 Pt 1):217-23. PubMed ID: 2579686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Further evidence for coupling of sodium and proton movements in dog red blood cells.
    Funder J; Parker JC; Wieth JO
    Biochim Biophys Acta; 1987 May; 899(2):311-2. PubMed ID: 3034330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.