These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 8647070)

  • 1. The regulation of enzymes involved in chlorophyll biosynthesis.
    Reinbothe S; Reinbothe C
    Eur J Biochem; 1996 Apr; 237(2):323-43. PubMed ID: 8647070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloroplast biogenesis. Demonstration of the monovinyl and divinyl monocarboxylic routes of chlorophyll biosynthesis in higher plants.
    Tripathy BC; Rebeiz CA
    J Biol Chem; 1986 Oct; 261(29):13556-64. PubMed ID: 3759979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual role of the active site 'lid' regions of protochlorophyllide oxidoreductase in photocatalysis and plant development.
    Zhang S; Godwin ARF; Taylor A; Hardman SJO; Jowitt TA; Johannissen LO; Hay S; Baldock C; Heyes DJ; Scrutton NS
    FEBS J; 2021 Jan; 288(1):175-189. PubMed ID: 32866986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulatory network of tetrapyrrole biosynthesis--studies of intracellular signalling involved in metabolic and developmental control of plastids.
    Papenbrock J; Grimm B
    Planta; 2001 Sep; 213(5):667-81. PubMed ID: 11678270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A prokaryotic origin for light-dependent chlorophyll biosynthesis of plants.
    Suzuki JY; Bauer CE
    Proc Natl Acad Sci U S A; 1995 Apr; 92(9):3749-53. PubMed ID: 7731978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis.
    Ilag LL; Kumar AM; Söll D
    Plant Cell; 1994 Feb; 6(2):265-75. PubMed ID: 7908550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell growth defect factor 1 is crucial for the plastid import of NADPH:protochlorophyllide oxidoreductase A in Arabidopsis thaliana.
    Reinbothe S; Gray J; Rustgi S; von Wettstein D; Reinbothe C
    Proc Natl Acad Sci U S A; 2015 May; 112(18):5838-43. PubMed ID: 25901327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of NADPH:protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana.
    Armstrong GA; Runge S; Frick G; Sperling U; Apel K
    Plant Physiol; 1995 Aug; 108(4):1505-17. PubMed ID: 7659751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Arabidopsis porB porC double mutant lacking light-dependent NADPH:protochlorophyllide oxidoreductases B and C is highly chlorophyll-deficient and developmentally arrested.
    Frick G; Su Q; Apel K; Armstrong GA
    Plant J; 2003 Jul; 35(2):141-53. PubMed ID: 12848821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-Dependent Protochlorophyllide Oxidoreductase: Phylogeny, Regulation, and Catalytic Properties.
    Gabruk M; Mysliwa-Kurdziel B
    Biochemistry; 2015 Sep; 54(34):5255-62. PubMed ID: 26230427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small Cab-like proteins regulating tetrapyrrole biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803.
    Xu H; Vavilin D; Funk C; Vermaas W
    Plant Mol Biol; 2002 May; 49(2):149-60. PubMed ID: 11999371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Low Temperature on Chlorophyll Biosynthesis and Chloroplast Biogenesis of Rice Seedlings during Greening.
    Zhao Y; Han Q; Ding C; Huang Y; Liao J; Chen T; Feng S; Zhou L; Zhang Z; Chen Y; Yuan S; Yuan M
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32092859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls.
    Masuda T
    Photosynth Res; 2008 May; 96(2):121-43. PubMed ID: 18273690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LCAA, a novel factor required for magnesium protoporphyrin monomethylester cyclase accumulation and feedback control of aminolevulinic acid biosynthesis in tobacco.
    Albus CA; Salinas A; Czarnecki O; Kahlau S; Rothbart M; Thiele W; Lein W; Bock R; Grimm B; Schöttler MA
    Plant Physiol; 2012 Dec; 160(4):1923-39. PubMed ID: 23085838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathways of formation of pigment forms at the terminal photobiochemical stage of chlorophyll biosynthesis.
    Belyaeva OB; Litvin FF
    Biochemistry (Mosc); 2009 Dec; 74(13):1535-44. PubMed ID: 20210707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Light-induced reduction of protochlorophyllide in angiosperms and chloroplast development].
    Myśliwa-Kurdziel B; Strzałka K
    Postepy Biochem; 2010; 56(4):418-26. PubMed ID: 21473046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings.
    Yaronskaya E; Vershilovskaya I; Poers Y; Alawady AE; Averina N; Grimm B
    Planta; 2006 Aug; 224(3):700-9. PubMed ID: 16506064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-independent chlorophyll biosynthesis: involvement of the chloroplast gene chlL (frxC).
    Suzuki JY; Bauer CE
    Plant Cell; 1992 Aug; 4(8):929-40. PubMed ID: 1392602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GUN4 is required for posttranslational control of plant tetrapyrrole biosynthesis.
    Peter E; Grimm B
    Mol Plant; 2009 Nov; 2(6):1198-210. PubMed ID: 19995725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreased and increased expression of the subunit CHL I diminishes Mg chelatase activity and reduces chlorophyll synthesis in transgenic tobacco plants.
    Papenbrock J; Pfündel E; Mock HP; Grimm B
    Plant J; 2000 Apr; 22(2):155-64. PubMed ID: 10792831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.