These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 8647349)

  • 1. Mechanical load induces sarcoplasmic wounding and FGF release in differentiated human skeletal muscle cultures.
    Clarke MS; Feeback DL
    FASEB J; 1996 Mar; 10(4):502-9. PubMed ID: 8647349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bed rest decreases mechanically induced myofiber wounding and consequent wound-mediated FGF release.
    Clarke MS; Bamman MM; Feeback DL
    J Appl Physiol (1985); 1998 Aug; 85(2):593-600. PubMed ID: 9688737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of transiently altered sarcolemmal membrane permeability and basic fibroblast growth factor release in the hypertrophic response of adult rat ventricular myocytes to increased mechanical activity in vitro.
    Kaye D; Pimental D; Prasad S; Mäki T; Berger HJ; McNeil PL; Smith TW; Kelly RA
    J Clin Invest; 1996 Jan; 97(2):281-91. PubMed ID: 8567946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contraction-induced cell wounding and release of fibroblast growth factor in heart.
    Clarke MS; Caldwell RW; Chiao H; Miyake K; McNeil PL
    Circ Res; 1995 Jun; 76(6):927-34. PubMed ID: 7538917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells.
    Kästner S; Elias MC; Rivera AJ; Yablonka-Reuveni Z
    J Histochem Cytochem; 2000 Aug; 48(8):1079-96. PubMed ID: 10898801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentially expressed fibroblast growth factors regulate skeletal muscle development through autocrine and paracrine mechanisms.
    Hannon K; Kudla AJ; McAvoy MJ; Clase KL; Olwin BB
    J Cell Biol; 1996 Mar; 132(6):1151-9. PubMed ID: 8601591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload.
    Goldspink G
    J Anat; 1999 Apr; 194 ( Pt 3)(Pt 3):323-34. PubMed ID: 10386770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fibroblast growth factor-23 induces cellular senescence in human mesenchymal stem cells from skeletal muscle.
    Sato C; Iso Y; Mizukami T; Otabe K; Sasai M; Kurata M; Sanbe T; Sekiya I; Miyazaki A; Suzuki H
    Biochem Biophys Res Commun; 2016 Feb; 470(3):657-662. PubMed ID: 26797283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ANG II is required for optimal overload-induced skeletal muscle hypertrophy.
    Gordon SE; Davis BS; Carlson CJ; Booth FW
    Am J Physiol Endocrinol Metab; 2001 Jan; 280(1):E150-9. PubMed ID: 11120669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Astrogliosis in culture. IV. Effects of basic fibroblast growth factor.
    Hou YJ; Yu AC; Garcia JM; Aotaki-Keen A; Lee YL; Eng LF; Hjelmeland LJ; Menon VK
    J Neurosci Res; 1995 Feb; 40(3):359-70. PubMed ID: 7745630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanotransduction pathways in skeletal muscle hypertrophy.
    Yamada AK; Verlengia R; Bueno Junior CR
    J Recept Signal Transduct Res; 2012 Feb; 32(1):42-4. PubMed ID: 22171534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Space travel directly induces skeletal muscle atrophy.
    Vandenburgh H; Chromiak J; Shansky J; Del Tatto M; Lemaire J
    FASEB J; 1999 Jun; 13(9):1031-8. PubMed ID: 10336885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of altered loading states on muscle plasticity: what have we learned from rodents?
    Baldwin KM
    Med Sci Sports Exerc; 1996 Oct; 28(10 Suppl):S101-6. PubMed ID: 8897413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of mRNA for specific fibroblast growth factors associates with that of the myogenic markers MyoD and proliferating cell nuclear antigen in regenerating and overloaded rat plantaris muscle.
    Tanaka Y; Yamaguchi A; Fujikawa T; Sakuma K; Morita I; Ishii K
    Acta Physiol (Oxf); 2008 Oct; 194(2):149-59. PubMed ID: 18429950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autocrine and/or paracrine insulin-like growth factor-I activity in skeletal muscle.
    Adams GR
    Clin Orthop Relat Res; 2002 Oct; (403 Suppl):S188-96. PubMed ID: 12394468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical pulse stimulation: an in vitro exercise model for the induction of human skeletal muscle cell hypertrophy. A proof-of-concept study.
    Tarum J; Folkesson M; Atherton PJ; Kadi F
    Exp Physiol; 2017 Nov; 102(11):1405-1413. PubMed ID: 28861930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selected Contribution: Skeletal muscle focal adhesion kinase, paxillin, and serum response factor are loading dependent.
    Gordon SE; Flück M; Booth FW
    J Appl Physiol (1985); 2001 Mar; 90(3):1174-83; discussion 1165. PubMed ID: 11181634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From T-tubule to sarcolemma: damage-induced dysferlin translocation in early myogenesis.
    Klinge L; Laval S; Keers S; Haldane F; Straub V; Barresi R; Bushby K
    FASEB J; 2007 Jun; 21(8):1768-76. PubMed ID: 17363620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FGF receptor availability regulates skeletal myogenesis.
    Scata KA; Bernard DW; Fox J; Swain JL
    Exp Cell Res; 1999 Jul; 250(1):10-21. PubMed ID: 10388517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repression of myogenic differentiation by aFGF, bFGF, and K-FGF is dependent on cellular heparan sulfate.
    Olwin BB; Rapraeger A
    J Cell Biol; 1992 Aug; 118(3):631-9. PubMed ID: 1379245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.