These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8647729)

  • 1. Filtering of distortion-product otoacoustic emissions in the inner ear of birds and lizards.
    Taschenberger G; Gallo L; Manley GA
    Hear Res; 1995 Nov; 91(1-2):87-92. PubMed ID: 8647729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distortion product otoacoustic emissions provide clues hearing mechanisms in the frog ear.
    Vassilakis PN; Meenderink SW; Narins PM
    J Acoust Soc Am; 2004 Dec; 116(6):3713-26. PubMed ID: 15658721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auditory peripheral tuning: evidence for a simple resonance phenomenon in the lizard Tiliqua.
    Manley GA; Yates GK; Köppl C
    Hear Res; 1988 May; 33(2):181-9. PubMed ID: 3397328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical filtering of sound in the inner ear.
    Brown AM; Gaskill SA; Williams DM
    Proc Biol Sci; 1992 Oct; 250(1327):29-34. PubMed ID: 1361059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of distortion product otoacoustic emissions and neural suppression tuning curves attributable to the tectorial membrane resonance.
    Lukashkin AN; Smith JK; Russell IJ
    J Acoust Soc Am; 2007 Jan; 121(1):337-43. PubMed ID: 17297788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of distortion product otoacoustic emissions and hearing threshold.
    Pienkowski M; Kunov H
    J Acoust Soc Am; 2001 Apr; 109(4):1496-502. PubMed ID: 11325121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tectorial membrane morphological variation: effects upon stimulus frequency otoacoustic emissions.
    Bergevin C; Velenovsky DS; Bonine KE
    Biophys J; 2010 Aug; 99(4):1064-72. PubMed ID: 20712989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. II. Interrelations between multicomponent DPOAEs, tone-burst-evoked OAEs, and spontaneous OAEs.
    Moulin A
    J Acoust Soc Am; 2000 Mar; 107(3):1471-86. PubMed ID: 10738802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model for the relation between stimulus frequency and spontaneous otoacoustic emissions in lizard papillae.
    Wit HP; van Dijk P; Manley GA
    J Acoust Soc Am; 2012 Nov; 132(5):3273-9. PubMed ID: 23145611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for the distortion product frequency place as a source of distortion product otoacoustic emission (DPOAE) fine structure in humans. I. Fine structure and higher-order DPOAE as a function of the frequency ratio f2/f1.
    Mauermann M; Uppenkamp S; van Hengel PW; Kollmeier B
    J Acoust Soc Am; 1999 Dec; 106(6):3473-83. PubMed ID: 10615687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the tectorial membrane revealed by otoacoustic emissions recorded from wild-type and transgenic Tecta(deltaENT/deltaENT) mice.
    Lukashkin AN; Lukashkina VA; Legan PK; Richardson GP; Russell IJ
    J Neurophysiol; 2004 Jan; 91(1):163-71. PubMed ID: 14523068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring distortion product otoacoustic emissions using continuously sweeping primaries.
    Long GR; Talmadge CL; Lee J
    J Acoust Soc Am; 2008 Sep; 124(3):1613-26. PubMed ID: 19045653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous Otoacoustic Emissions in
    Cheatham MA; Zhou Y; Goodyear RJ; Dallos P; Richardson GP
    eNeuro; 2018; 5(6):. PubMed ID: 30627650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for a bipolar change in distortion product otoacoustic emissions during contralateral acoustic stimulation in humans.
    Müller J; Janssen T; Heppelmann G; Wagner W
    J Acoust Soc Am; 2005 Dec; 118(6):3747-56. PubMed ID: 16419819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sources and mechanisms of DPOAE generation: implications for the prediction of auditory sensitivity.
    Shaffer LA; Withnell RH; Dhar S; Lilly DJ; Goodman SS; Harmon KM
    Ear Hear; 2003 Oct; 24(5):367-79. PubMed ID: 14534408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distortion-product otoacoustic emissions measured at high frequencies in humans.
    Dreisbach LE; Siegel JH
    J Acoust Soc Am; 2001 Nov; 110(5 Pt 1):2456-69. PubMed ID: 11757935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression tuning characteristics of the 2 f1-f2 distortion-product otoacoustic emission in humans.
    Kummer P; Janssen T; Arnold W
    J Acoust Soc Am; 1995 Jul; 98(1):197-210. PubMed ID: 7608400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distortion product otoacoustic emissions: a time domain analysis.
    Duifhuis H
    ORL J Otorhinolaryngol Relat Spec; 2006; 68(6):340-6. PubMed ID: 17065827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of the tectorial membrane protein CEACAM16 enhances spontaneous, stimulus-frequency, and transiently evoked otoacoustic emissions.
    Cheatham MA; Goodyear RJ; Homma K; Legan PK; Korchagina J; Naskar S; Siegel JH; Dallos P; Zheng J; Richardson GP
    J Neurosci; 2014 Jul; 34(31):10325-38. PubMed ID: 25080593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contralateral auditory stimulation alters acoustic distortion products in humans.
    Moulin A; Collet L; Duclaux R
    Hear Res; 1993 Feb; 65(1-2):193-210. PubMed ID: 8458751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.