These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8647729)

  • 21. The influence of common stimulus parameters on distortion product otoacoustic emission fine structure.
    Johnson TA; Baranowski LG
    Ear Hear; 2012; 33(2):239-49. PubMed ID: 21918451
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-term effect of acoustic trauma on distortion product otoacoustic emissions in chickens.
    Froymovich O; Rebala V; Salvi RJ; Rassael H
    J Acoust Soc Am; 1995 May; 97(5 Pt 1):3021-9. PubMed ID: 7759642
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Studies of the evaluation of cochlea function with distortion product otoacoustic emission].
    Kashiwamura M
    Hokkaido Igaku Zasshi; 1998 Nov; 73(6):641-62. PubMed ID: 10036620
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A deafness mutation isolates a second role for the tectorial membrane in hearing.
    Legan PK; Lukashkina VA; Goodyear RJ; Lukashkin AN; Verhoeven K; Van Camp G; Russell IJ; Richardson GP
    Nat Neurosci; 2005 Aug; 8(8):1035-42. PubMed ID: 15995703
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism for bandpass frequency characteristic in distortion product otoacoustic emission generation.
    Fahey PF; Stagner BB; Martin GK
    J Acoust Soc Am; 2006 Feb; 119(2):991-6. PubMed ID: 16521760
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distortion product otoacoustic emissions for hearing threshold estimation and differentiation between middle-ear and cochlear disorders in neonates.
    Janssen T; Gehr DD; Klein A; Müller J
    J Acoust Soc Am; 2005 May; 117(5):2969-79. PubMed ID: 15957767
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Separating the contributions of olivocochlear and middle ear muscle reflexes in modulation of distortion product otoacoustic emission levels.
    Wolter NE; Harrison RV; James AL
    Audiol Neurootol; 2014; 19(1):41-8. PubMed ID: 24335024
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Further studies on the mechanics of the cochlear partition in the mustached bat. II. A second cochlear frequency map derived from acoustic distortion products.
    Kössl M; Vater M
    Hear Res; 1996 May; 94(1-2):78-86. PubMed ID: 8789813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distortion product otoacoustic emission (DPOAE) input/output functions and the influence of the second DPOAE source.
    Mauermann M; Kollmeier B
    J Acoust Soc Am; 2004 Oct; 116(4 Pt 1):2199-212. PubMed ID: 15532652
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spontaneous otoacoustic emissions in the bobtail lizard. I: General characteristics.
    Köppl C; Manley GA
    Hear Res; 1993 Dec; 71(1-2):157-69. PubMed ID: 8113134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spontaneous otoacoustic emissions from free-standing stereovillar bundles of ten species of lizard with small papillae.
    Manley GA
    Hear Res; 2006 Feb; 212(1-2):33-47. PubMed ID: 16307854
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.
    Manley GA; van Dijk P
    Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous latency estimations for distortion product otoacoustic emissions and envelope following responses.
    Purcell DW; Van Roon P; John MS; Picton TW
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):2869-80. PubMed ID: 16708945
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increased Spontaneous Otoacoustic Emissions in Mice with a Detached Tectorial Membrane.
    Cheatham MA; Ahmad A; Zhou Y; Goodyear RJ; Dallos P; Richardson GP
    J Assoc Res Otolaryngol; 2016 Apr; 17(2):81-8. PubMed ID: 26691158
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A targeted deletion in alpha-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback.
    Legan PK; Lukashkina VA; Goodyear RJ; Kössi M; Russell IJ; Richardson GP
    Neuron; 2000 Oct; 28(1):273-85. PubMed ID: 11087000
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Level dependence of the nonlinear-distortion component of distortion-product otoacoustic emissions in humans.
    Zelle D; Thiericke JP; Dalhoff E; Gummer AW
    J Acoust Soc Am; 2015 Dec; 138(6):3475-90. PubMed ID: 26723305
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Objective audiometry with DPOAEs : New findings for generation mechanisms and clinical applications.
    Zelle D; Dalhoff E; Gummer AW
    HNO; 2017 Aug; 65(Suppl 2):122-129. PubMed ID: 28470484
    [TBL] [Abstract][Full Text] [Related]  

  • 39. What have lizard ears taught us about auditory physiology?
    Manley GA; Köppl C
    Hear Res; 2008 Apr; 238(1-2):3-11. PubMed ID: 17983712
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimation of Minor Conductive Hearing Loss in Humans Using Distortion Product Otoacoustic Emissions.
    Marcrum SC; Kummer P; Steffens T
    Ear Hear; 2017; 38(4):391-398. PubMed ID: 28169838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.