These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 8647729)
41. [Effect of inner ear hearing loss on delayed otoacoustic emissions (TEOAE) and distortion products (DPOAE)]. Hoth S Laryngorhinootologie; 1996 Dec; 75(12):709-18. PubMed ID: 9081275 [TBL] [Abstract][Full Text] [Related]
42. Detailed f1, f2 area study of distortion product otoacoustic emissions in the frog. Meenderink SW; Narins PM; van Dijk P J Assoc Res Otolaryngol; 2005 Mar; 6(1):37-47. PubMed ID: 15735935 [TBL] [Abstract][Full Text] [Related]
43. Otoacoustic emissions from ears with spontaneous activity behave differently to those without: Stronger responses to tone bursts as well as to clicks. Jedrzejczak WW; Kochanek K; Skarzynski H PLoS One; 2018; 13(2):e0192930. PubMed ID: 29451905 [TBL] [Abstract][Full Text] [Related]
44. Cochlear generation of intermodulation distortion revealed by DPOAE frequency functions in normal and impaired ears. Stover LJ; Neely ST; Gorga MP J Acoust Soc Am; 1999 Nov; 106(5):2669-78. PubMed ID: 10573884 [TBL] [Abstract][Full Text] [Related]
45. Olivocochlear reflex effect on human distortion product otoacoustic emissions is largest at frequencies with distinct fine structure dips. Wagner W; Heppelmann G; Müller J; Janssen T; Zenner HP Hear Res; 2007 Jan; 223(1-2):83-92. PubMed ID: 17137736 [TBL] [Abstract][Full Text] [Related]
46. Distortion product otoacoustic emission fine structure is responsible for variability of distortion product otoacoustic emission contralateral suppression. Sun XM J Acoust Soc Am; 2008 Jun; 123(6):4310-20. PubMed ID: 18537382 [TBL] [Abstract][Full Text] [Related]
47. Spontaneous otoacoustic emissions in the bobtail lizard. II: Interactions with external tones. Köppl C; Manley GA Hear Res; 1994 Jan; 72(1-2):159-70. PubMed ID: 8150732 [TBL] [Abstract][Full Text] [Related]
48. Cochlear sensitivity in the lesser spear-nosed bat, Phyllostomus discolor. Wittekindt A; Drexl M; Kössl M J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jan; 191(1):31-6. PubMed ID: 15378333 [TBL] [Abstract][Full Text] [Related]
49. Distortion product otoacoustic emission (2f1-f2) amplitude as a function of f2/f1 frequency ratio and primary tone level separation in human adults and neonates. Abdala C J Acoust Soc Am; 1996 Dec; 100(6):3726-40. PubMed ID: 8969474 [TBL] [Abstract][Full Text] [Related]
50. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans. Sun XM Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284 [TBL] [Abstract][Full Text] [Related]
51. DPOAE suppression tuning: cochlear immaturity in premature neonates or auditory aging in normal-hearing adults? Abdala C J Acoust Soc Am; 2001 Dec; 110(6):3155-62. PubMed ID: 11785816 [TBL] [Abstract][Full Text] [Related]
52. Distortion-product otoacoustic emission growth curves in neonates. Barbosa TA; Durante AS; Granato L Rev Assoc Med Bras (1992); 2014; 60(6):591-8. PubMed ID: 25650862 [TBL] [Abstract][Full Text] [Related]
53. [Use of acoustic distortion products in clinical diagnosis. The site of origin of otoacoustic emissions in the inner ear]. Plinkert PK; Harris FP; Probst R HNO; 1993 Jul; 41(7):339-44. PubMed ID: 8376180 [TBL] [Abstract][Full Text] [Related]
54. Similarity in loudness and distortion product otoacoustic emission input/output functions: implications for an objective hearing aid adjustment. Müller J; Janssen T J Acoust Soc Am; 2004 Jun; 115(6):3081-91. PubMed ID: 15237833 [TBL] [Abstract][Full Text] [Related]
55. Locus of generation for the 2f1-f2 vs 2f2-f1 distortion-product otoacoustic emissions in normal-hearing humans revealed by suppression tuning, onset latencies, and amplitude correlations. Martin GK; Jassir D; Stagner BB; Whitehead ML; Lonsbury-Martin BL J Acoust Soc Am; 1998 Apr; 103(4):1957-71. PubMed ID: 9566319 [TBL] [Abstract][Full Text] [Related]
56. Modeling otoacoustic emission and hearing threshold fine structures. Talmadge CL; Tubis A; Long GR; Piskorski P J Acoust Soc Am; 1998 Sep; 104(3 Pt 1):1517-43. PubMed ID: 9745736 [TBL] [Abstract][Full Text] [Related]
57. Sensitive response to low-frequency cochlear distortion products in the auditory midbrain. Abel C; Kössl M J Neurophysiol; 2009 Mar; 101(3):1560-74. PubMed ID: 19036870 [TBL] [Abstract][Full Text] [Related]