These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 8648299)

  • 1. Nucleotide turnover rate measured in fully relaxed rabbit skeletal muscle myofibrils.
    Myburgh KH; Franks-Skiba K; Cooke R
    J Gen Physiol; 1995 Nov; 106(5):957-73. PubMed ID: 8648299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myosin ATP turnover rate is a mechanism involved in thermogenesis in resting skeletal muscle fibers.
    Stewart MA; Franks-Skiba K; Chen S; Cooke R
    Proc Natl Acad Sci U S A; 2010 Jan; 107(1):430-5. PubMed ID: 19966283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of nucleotide exchange rate constants in single rabbit soleus myofibrils during shortening and lengthening using a fluorescent ATP analog.
    Shirakawa I; Chaen S; Bagshaw CR; Sugi H
    Biophys J; 2000 Feb; 78(2):918-26. PubMed ID: 10653804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction intermediates formed by myofibrils during the ATPase reaction under relaxed conditions.
    Miyata M; Arata T; Inoue A
    J Biochem; 1989 Feb; 105(2):271-4. PubMed ID: 2524474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the super-relaxed state of myosin in myofibrils from fast-twitch, slow-twitch, and cardiac muscle.
    Walklate J; Kao K; Regnier M; Geeves MA
    J Biol Chem; 2022 Mar; 298(3):101640. PubMed ID: 35090895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow myosin ATP turnover in the super-relaxed state in tarantula muscle.
    Naber N; Cooke R; Pate E
    J Mol Biol; 2011 Sep; 411(5):943-50. PubMed ID: 21763701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early steps of the Mg(2+)-ATPase of relaxed myofibrils. A comparison with Ca(2+)-activated myofibrils and myosin subfragment 1.
    Herrmann C; Houadjeto M; Travers F; Barman T
    Biochemistry; 1992 Sep; 31(34):8036-42. PubMed ID: 1387323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rotational dynamics of actin-bound intermediates of the myosin adenosine triphosphatase cycle in myofibrils.
    Berger CL; Thomas DD
    Biophys J; 1994 Jul; 67(1):250-61. PubMed ID: 7918993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate.
    White HD; Belknap B; Webb MR
    Biochemistry; 1997 Sep; 36(39):11828-36. PubMed ID: 9305974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the myosin adenosine triphosphate (M.ATP) crossbridge in rabbit and frog skeletal muscle fibers.
    Schoenberg M
    Biophys J; 1988 Jul; 54(1):135-48. PubMed ID: 3261996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of nucleotide release kinetics in single skeletal muscle myofibrils during isometric and isovelocity contractions using fluorescence microscopy.
    Chaen S; Shirakawa I; Bagshaw CR; Sugi H
    Biophys J; 1997 Oct; 73(4):2033-42. PubMed ID: 9336198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new state of cardiac myosin with very slow ATP turnover: a potential cardioprotective mechanism in the heart.
    Hooijman P; Stewart MA; Cooke R
    Biophys J; 2011 Apr; 100(8):1969-76. PubMed ID: 21504733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does phosphate release limit the ATPases of soleus myofibrils? Evidence that (A)M. ADP.Pi states predominate on the cross-bridge cycle.
    Iorga B; Candau R; Travers F; Barman T; Lionne C
    J Muscle Res Cell Motil; 2004; 25(4-5):367-78. PubMed ID: 15548866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The myosin inhibitor blebbistatin stabilizes the super-relaxed state in skeletal muscle.
    Wilson C; Naber N; Pate E; Cooke R
    Biophys J; 2014 Oct; 107(7):1637-46. PubMed ID: 25296316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dependence of adenosine triphosphatase activity of rabbit psoas muscle fibres and myofibrils on substrate concentration.
    Glyn H; Sleep J
    J Physiol; 1985 Aug; 365():259-76. PubMed ID: 3162018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide binding by myosin in glycerol-extracted rabbit skeletal muscle fibres at temperatures between -35 degrees C and 10 degrees C.
    Tregear R; Kellam S
    Eur J Biochem; 1986 Feb; 155(1):95-8. PubMed ID: 3948882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of N-Terminal Extension of Cardiac Troponin I on the Ca(2+) Regulation of ATP Binding and ADP Dissociation of Myosin II in Native Cardiac Myofibrils.
    Gunther LK; Feng HZ; Wei H; Raupp J; Jin JP; Sakamoto T
    Biochemistry; 2016 Mar; 55(12):1887-97. PubMed ID: 26862665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and spectroscopic characterization of fluorescent ribose-modified ATP analogs upon interaction with skeletal muscle myosin subfragment 1.
    Conibear PB; Jeffreys DS; Seehra CK; Eaton RJ; Bagshaw CR
    Biochemistry; 1996 Feb; 35(7):2299-308. PubMed ID: 8652570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of relaxation from rigor of permeabilized fast-twitch skeletal fibers from the rabbit using a novel caged ATP and apyrase.
    Thirlwell H; Corrie JE; Reid GP; Trentham DR; Ferenczi MA
    Biophys J; 1994 Dec; 67(6):2436-47. PubMed ID: 7696482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.