These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 8648441)

  • 41. Methionine, leucine, isoleucine, or threonine effects on mammary cell signaling and pup growth in lactating mice.
    Liu GM; Hanigan MD; Lin XY; Zhao K; Jiang FG; White RR; Wang Y; Hu ZY; Wang ZH
    J Dairy Sci; 2017 May; 100(5):4038-4050. PubMed ID: 28237591
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Isolation of functionally active acini from bovine mammary gland.
    Park CS; Smith JJ; Sasaki M; Eigel WN; Keenan TW
    J Dairy Sci; 1979 Apr; 62(4):537-45. PubMed ID: 222819
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preferential utilization of exogenously supplied leucine for protein synthesis in estradiol-induced and uninduced cockerel liver explants.
    Gehrke L; Ilan J
    Proc Natl Acad Sci U S A; 1983 Jun; 80(11):3274-8. PubMed ID: 6574484
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Comparison of the intensity of the incorporation of H3-leucine in the secretory cells of different parts of the mammary gland].
    Markov AG; Rhüle HI; Brust P
    Fiziol Zh SSSR Im I M Sechenova; 1988 Mar; 74(3):435-8. PubMed ID: 3384137
    [No Abstract]   [Full Text] [Related]  

  • 45. Lysine transport in lactating rat mammary tissue: evidence for an interaction between cationic and neutral amino acids.
    Shennan DB; McNeillie SA; Jamieson EA; Calvert DT
    Acta Physiol Scand; 1994 Aug; 151(4):461-6. PubMed ID: 7976419
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterisation and starvation induced regulation of methionine uptake sites in mouse mammary gland.
    Verma N; Kansal VK
    Indian J Exp Biol; 1995 Jul; 33(7):516-20. PubMed ID: 7590960
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Peptide transport in yeast: utilization of leucine- and lysine-containing peptides by Saccharomyces cerevisiae.
    Marder R; Becker JM; Naider F
    J Bacteriol; 1977 Sep; 131(3):906-16. PubMed ID: 330503
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Incorporation of various amino acids into non-histone chromatin protein fractions of spleen cells of mice immunized with IgG.
    Rakowicz-Szulczyńska EM; Horst A
    Mol Cell Biochem; 1981 Jun; 37(1):13-9. PubMed ID: 6166846
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Radioautography by the electron microscope of the incorporation of tritiated leucine into the mammary gland of the lactating mouse].
    Fiske S; Courtecuisse V; Haguenau F
    C R Acad Hebd Seances Acad Sci D; 1966 Jan; 262(1):126-9. PubMed ID: 4955665
    [No Abstract]   [Full Text] [Related]  

  • 50. Methionyl-Methionine Dipeptide Enhances Mammogenesis and Lactogenesis by Suppressing the Expression of a Novel Long Noncoding RNA MGPNCR to Inhibit eIF4B Dephosphorylation.
    Chen Q; Zhao FQ; Han B; Jiang C; Liu H
    J Agric Food Chem; 2024 Mar; 72(12):6414-6423. PubMed ID: 38501560
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Methionine-Containing Rhabdopeptide/Xenortide-like Peptides from Heterologous Expression of the Biosynthetic Gene Cluster kj12ABC in Escherichia coli.
    Zhao L; Cai X; Kaiser M; Bode HB
    J Nat Prod; 2018 Oct; 81(10):2292-2295. PubMed ID: 30302998
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Peptide utilization in Pseudomonas aeruginosa: evidence for membrane-associated peptidase.
    Miller RV; Becker JM
    J Bacteriol; 1978 Jan; 133(1):165-71. PubMed ID: 412832
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Utilization of methionine-containing peptides and their derivatives by a methionine-requiring auxotroph of Saccharomyces cerevisiae.
    Naider F; Becker JM; Katzir-Katchalski E
    J Biol Chem; 1974 Jan; 249(1):9-20. PubMed ID: 4588695
    [No Abstract]   [Full Text] [Related]  

  • 54. On the degradation of enkephalins and endorphins by rat and mouse brain extracts.
    Marks N; Grynabaum A; Neidle A
    Biochem Biophys Res Commun; 1977 Feb; 74(4):1552-9. PubMed ID: 843378
    [No Abstract]   [Full Text] [Related]  

  • 55. Easy Production of "Difficult Peptides" Using Cell-Free Protein Synthesis and a New Methionine Analogue as a Latent Peptide Cleavage Site.
    Fankhauser D; Alissandratos A; Liutkus M; Easton CJ
    Chemistry; 2021 Dec; 27(69):17487-17494. PubMed ID: 34651362
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Peptides. XXVI. Analogues of gastrin containing leucine in place of methionine.
    Kenner GW; Mendive JJ; Sheppard RC
    J Chem Soc Perkin 1; 1968; 7():761-4. PubMed ID: 5689203
    [No Abstract]   [Full Text] [Related]  

  • 57. Studies on protein synthesis in vitro; further observations on the incorporation of methionine into liver protein.
    SIMPSON MV; TARVER H
    Arch Biochem; 1950 Feb; 25(2):384-95. PubMed ID: 15404828
    [No Abstract]   [Full Text] [Related]  

  • 58. Synthesis of peptides of methionine and their cleavage by proteolytic enzymes.
    DEKKER CA; TAYLOR SP; FRUTON JS
    J Biol Chem; 1949 Aug; 180(1):155-73. PubMed ID: 18133382
    [No Abstract]   [Full Text] [Related]  

  • 59. [Utilization of a mixture of enzymic 1-methionine polypeptides by the animal organism].
    VIOLLIER G; KOCHER V; BRENNER M
    Helv Physiol Pharmacol Acta; 1950; 8(4):475-85. PubMed ID: 14802957
    [No Abstract]   [Full Text] [Related]  

  • 60. [Measurements of the rate of new blood protein formation according to various methods].
    MAURER W; NIKLAS A
    Strahlentherapie; 1955; Sonderbd 33():202-11. PubMed ID: 13298909
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.