These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 8648501)

  • 1. Stable partial debonding of the cement interfaces indicated by a finite element model of a total hip prosthesis.
    Lu Z; Ebramzadeh E; McKellop H; Sarmiento A
    J Orthop Res; 1996 Mar; 14(2):238-44. PubMed ID: 8648501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of variation of cement thickness on bone and cement stress at the tip of a femoral implant.
    Lee IY; Skinner HB; Keyak JH
    Iowa Orthop J; 1993; 13():155-9. PubMed ID: 7820736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of variation of prosthesis size on cement stress at the tip of a femoral implant.
    Lee IY; Skinner HB; Keyak JH
    J Biomed Mater Res; 1994 Sep; 28(9):1055-60. PubMed ID: 7814433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A finite element study of the initiation of failure of fixation in cemented femoral total hip components.
    Harrigan TP; Kareh JA; O'Connor DO; Burke DW; Harris WH
    J Orthop Res; 1992 Jan; 10(1):134-44. PubMed ID: 1727933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative FEA of the debonding process in different concepts of cemented hip implants.
    Pérez MA; García-Aznar JM; Doblaré M; Seral B; Seral F
    Med Eng Phys; 2006 Jul; 28(6):525-33. PubMed ID: 16257253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of stem geometry on mechanics of cemented femoral hip components with a proximal bond.
    Mann KA; Bartel DL; Ayers DC
    J Orthop Res; 1997 Sep; 15(5):700-6. PubMed ID: 9420599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cement mantle stress under retroversion torque at heel-strike.
    Afsharpoya B; Barton DC; Fisher J; Purbach B; Wroblewski M; Stewart TD
    Med Eng Phys; 2009 Dec; 31(10):1323-30. PubMed ID: 19879794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stiffness optimisation of cement and stem materials in total hip replacement.
    Hedia HS
    Biomed Mater Eng; 2001; 11(1):1-10. PubMed ID: 11281574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reinforcement of bone cement around prostheses by pre-coated wire coil: a finite element model study.
    Grosland N; Kim JK; Park JB
    Biomed Mater Eng; 1995; 5(1):29-36. PubMed ID: 7773144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulation on fatigue behavior of cemented hip prostheses: a physiological model.
    Hung JP; Chen JH; Chiang HL; Wu JS
    Comput Methods Programs Biomed; 2004 Nov; 76(2):103-13. PubMed ID: 15451160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-dimensional non-linear finite element study of the effect of cement-prosthesis debonding in cemented femoral total hip components.
    Harrigan TP; Harris WH
    J Biomech; 1991; 24(11):1047-58. PubMed ID: 1761581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro measurement of strain in the bone cement surrounding the femoral component of total hip replacements during simulated gait and stair-climbing.
    O'Connor DO; Burke DW; Jasty M; Sedlacek RC; Harris WH
    J Orthop Res; 1996 Sep; 14(5):769-77. PubMed ID: 8893771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Influence of proximal stem geometry and stem-cement interface characteristics on bone and cement stresses in femoral hip arthroplasty: finite element analysis].
    Massin P; Astoin E; Lavaste F
    Rev Chir Orthop Reparatrice Appar Mot; 2003 Apr; 89(2):134-43. PubMed ID: 12844057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element analysis of a three-dimensional model of a proximal femur-cemented femoral THJR component construct: influence of assigned interface conditions on strain energy density.
    Lewis G; Duggineni R
    Biomed Mater Eng; 2006; 16(5):319-27. PubMed ID: 17075167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of stem length on mechanics of the femoral hip component after cemented revision.
    Mann KA; Ayers DC; Damron TA
    J Orthop Res; 1997 Jan; 15(1):62-8. PubMed ID: 9066528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cemented femoral stem performance. Effects of proximal bonding, geometry, and neck length.
    Chang PB; Mann KA; Bartel DL
    Clin Orthop Relat Res; 1998 Oct; (355):57-69. PubMed ID: 9917591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape optimization of metal backing for cemented acetabular cup.
    Hedia HS; Abdel-Shafi AA; Fouda N
    Biomed Mater Eng; 2000; 10(2):73-82. PubMed ID: 11086841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of femoral prosthesis design on cement strain in cemented total hip arthroplasty.
    Peters CL; Bachus KN; Craig MA; Higginbotham TO
    J Arthroplasty; 2001 Feb; 16(2):216-24. PubMed ID: 11222897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanics of cemented and cementless prostheses.
    Jasty M; Burke D; Harris WH
    Chir Organi Mov; 1992; 77(4):349-58. PubMed ID: 1297569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of stem geometry on stresses within the distal cement mantle in total hip replacement.
    Schmölz W; Gordon DR; Shields AJ; Kirkwood D; Grigoris P
    Technol Health Care; 2000; 8(1):67-73. PubMed ID: 10942992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.