These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 8648618)
41. Multiple solvent crystal structures of ribonuclease A: an assessment of the method. Dechene M; Wink G; Smith M; Swartz P; Mattos C Proteins; 2009 Sep; 76(4):861-81. PubMed ID: 19291738 [TBL] [Abstract][Full Text] [Related]
42. Towards a molecular understanding of phase separation in the lens: a comparison of the X-ray structures of two high Tc gamma-crystallins, gammaE and gammaF, with two low Tc gamma-crystallins, gammaB and gammaD. Norledge BV; Hay RE; Bateman OA; Slingsby C; Driessen HP Exp Eye Res; 1997 Nov; 65(5):609-30. PubMed ID: 9367641 [TBL] [Abstract][Full Text] [Related]
43. Selective deamidation of ribonuclease A. Isolation and characterization of the resulting isoaspartyl and aspartyl derivatives. Di Donato A; Ciardiello MA; de Nigris M; Piccoli R; Mazzarella L; D'Alessio G J Biol Chem; 1993 Mar; 268(7):4745-51. PubMed ID: 8444851 [TBL] [Abstract][Full Text] [Related]
44. Studies on long-acting insulin: crystal structure of Arg-B31 human insulin at 2.0A resolution. Ren B; Wang DC; Chang WR; Zhang Y; Obermeier R Sci China B; 1993 Dec; 36(12):1501-9. PubMed ID: 8129837 [TBL] [Abstract][Full Text] [Related]
45. Sequence and structure determinants of the nonenzymatic deamidation of asparagine and glutamine residues in proteins. Wright HT Protein Eng; 1991 Feb; 4(3):283-94. PubMed ID: 1649998 [TBL] [Abstract][Full Text] [Related]
46. Kinetic and thermodynamic control of the relative yield of the deamidation of asparagine and isomerization of aspartic acid residues. Capasso S; Di Cerbo P J Pept Res; 2000 Dec; 56(6):382-7. PubMed ID: 11152297 [TBL] [Abstract][Full Text] [Related]
47. The crystal structure of the cis-proline to glycine variant (P114G) of ribonuclease A. Schultz DA; Friedman AM; White MA; Fox RO Protein Sci; 2005 Nov; 14(11):2862-70. PubMed ID: 16199662 [TBL] [Abstract][Full Text] [Related]
48. Stepwise deamidation of ribonuclease A at five sites determined by top down mass spectrometry. Zabrouskov V; Han X; Welker E; Zhai H; Lin C; van Wijk KJ; Scheraga HA; McLafferty FW Biochemistry; 2006 Jan; 45(3):987-92. PubMed ID: 16411774 [TBL] [Abstract][Full Text] [Related]
49. Effect of the three-dimensional structure on the deamidation reaction of ribonuclease A. Capasso S; Salvadori S J Pept Res; 1999 Nov; 54(5):377-82. PubMed ID: 10563503 [TBL] [Abstract][Full Text] [Related]
50. X-ray crystal structures of a severely desiccated protein. Bell JA Protein Sci; 1999 Oct; 8(10):2033-40. PubMed ID: 10548049 [TBL] [Abstract][Full Text] [Related]
51. Protein asparagine deamidation prediction based on structures with machine learning methods. Jia L; Sun Y PLoS One; 2017; 12(7):e0181347. PubMed ID: 28732052 [TBL] [Abstract][Full Text] [Related]
52. The refined crystal structure of a fully active semisynthetic ribonuclease at 1.8-A resolution. Martin PD; Doscher MS; Edwards BF J Biol Chem; 1987 Nov; 262(33):15930-8. PubMed ID: 3680234 [TBL] [Abstract][Full Text] [Related]
53. Why does ribonuclease irreversibly inactivate at high temperatures? Zale SE; Klibanov AM Biochemistry; 1986 Sep; 25(19):5432-44. PubMed ID: 3778869 [TBL] [Abstract][Full Text] [Related]
54. Importance of asparagine-61 and asparagine-109 to the angiogenic activity of human angiogenin. Hallahan TW; Shapiro R; Strydom DJ; Vallee BL Biochemistry; 1992 Sep; 31(34):8022-9. PubMed ID: 1380830 [TBL] [Abstract][Full Text] [Related]
55. Interactions of gold-based drugs with proteins: crystal structure of the adduct formed between ribonuclease A and a cytotoxic gold(III) compound. Messori L; Scaletti F; Massai L; Cinellu MA; Russo Krauss I; di Martino G; Vergara A; Paduano L; Merlino A Metallomics; 2014 Feb; 6(2):233-6. PubMed ID: 24287583 [TBL] [Abstract][Full Text] [Related]
56. Mechanisms of Deamidation of Asparagine Residues and Effects of Main-Chain Conformation on Activation Energy. Kato K; Nakayoshi T; Kurimoto E; Oda A Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32987875 [TBL] [Abstract][Full Text] [Related]
57. The segmented anisotropic refinement of monoclinic papain by the application of the rigid-body TLS model and comparison to bovine ribonuclease A. Harris GW; Pickersgill RW; Howlin B; Moss DS Acta Crystallogr B; 1992 Feb; 48 ( Pt 1)():67-75. PubMed ID: 1616693 [TBL] [Abstract][Full Text] [Related]
58. Atomic resolution structures of ribonuclease A at six pH values. Berisio R; Sica F; Lamzin VS; Wilson KS; Zagari A; Mazzarella L Acta Crystallogr D Biol Crystallogr; 2002 Mar; 58(Pt 3):441-50. PubMed ID: 11856829 [TBL] [Abstract][Full Text] [Related]
59. Quantitating the relative abundance of isoaspartyl residues in deamidated proteins by electron capture dissociation. Cournoyer JJ; Lin C; Bowman MJ; O'Connor PB J Am Soc Mass Spectrom; 2007 Jan; 18(1):48-56. PubMed ID: 16997569 [TBL] [Abstract][Full Text] [Related]
60. Plasticity, hydration and accessibility in ribonuclease A. The structure of a new crystal form and its low-humidity variant. Sadasivan C; Nagendra HG; Vijayan M Acta Crystallogr D Biol Crystallogr; 1998 Nov; 54(Pt 6 Pt 2):1343-52. PubMed ID: 10089510 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]