BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 8650225)

  • 1. Expression of corticotropin-releasing factor in inflamed tissue is required for intrinsic peripheral opioid analgesia.
    Schafer M; Mousa SA; Zhang Q; Carter L; Stein C
    Proc Natl Acad Sci U S A; 1996 Jun; 93(12):6096-100. PubMed ID: 8650225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interleukin 1 beta and corticotropin-releasing factor inhibit pain by releasing opioids from immune cells in inflamed tissue.
    Schäfer M; Carter L; Stein C
    Proc Natl Acad Sci U S A; 1994 May; 91(10):4219-23. PubMed ID: 7910403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corticotropin-releasing factor and interleukin-1beta are involved in the electroacupuncture-induced analgesic effect on inflammatory pain elicited by carrageenan.
    Sekido R; Ishimaru K; Sakita M
    Am J Chin Med; 2004; 32(2):269-79. PubMed ID: 15315264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corticotropin-releasing factor in antinociception and inflammation.
    Schäfer M; Mousa SA; Stein C
    Eur J Pharmacol; 1997 Mar; 323(1):1-10. PubMed ID: 9105870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of inflammatory pain by CRF at peripheral, spinal and supraspinal sites: involvement of areas coexpressing CRF receptors and opioid peptides.
    Mousa SA; Bopaiah CP; Richter JF; Yamdeu RS; Schäfer M
    Neuropsychopharmacology; 2007 Dec; 32(12):2530-42. PubMed ID: 17375137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of inflammatory pain by chemokine-mediated recruitment of opioid-containing polymorphonuclear cells.
    Brack A; Rittner HL; Machelska H; Leder K; Mousa SA; Schäfer M; Stein C
    Pain; 2004 Dec; 112(3):229-238. PubMed ID: 15561377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immune-derived opioids and peripheral antinociception.
    Cabot PJ
    Clin Exp Pharmacol Physiol; 2001 Mar; 28(3):230-2. PubMed ID: 11236131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local upregulation of corticotropin-releasing hormone and interleukin-1 receptors in rats with painful hindlimb inflammation.
    Mousa SA; Schäfer M; Mitchell WM; Hassan AH; Stein C
    Eur J Pharmacol; 1996 Sep; 311(2-3):221-31. PubMed ID: 8891603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological correlates of immune-mediated peripheral opioid analgesia.
    Mousa SA
    Adv Exp Med Biol; 2003; 521():77-87. PubMed ID: 12617566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic mechanisms of antinociception in inflammation: local opioid receptors and beta-endorphin.
    Stein C; Gramsch C; Herz A
    J Neurosci; 1990 Apr; 10(4):1292-8. PubMed ID: 2158530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytokines and peripheral analgesia.
    Schäfer M
    Adv Exp Med Biol; 2003; 521():40-50. PubMed ID: 12617563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of corticotropin-releasing factor in the antinociception produced by interleukin-1 in mice.
    Kita A; Imano K; Nakamura H
    Eur J Pharmacol; 1993 Jun; 237(2-3):317-22. PubMed ID: 8365458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of spinal kappa opioid receptors in the antinociception produced by intrathecally administered corticotropin-releasing factor in mice.
    Song ZH; Takemori AE
    J Pharmacol Exp Ther; 1990 Aug; 254(2):363-8. PubMed ID: 2166788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The peripheral corticotropin-releasing factor (CRF)-induced analgesic effect on somatic pain sensitivity in conscious rats: involving CRF, opioid and glucocorticoid receptors.
    Yarushkina NI; Filaretova LP
    Inflammopharmacology; 2018 Apr; 26(2):305-318. PubMed ID: 29404882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of luteinizing-hormone-releasing hormone, alpha-melanocyte-stimulating hormone, naloxone, dexamethasone and indomethacin on interleukin-2-induced corticotropin-releasing factor release.
    Karanth S; Lyson K; Aguila MC; McCann SM
    Neuroimmunomodulation; 1995; 2(3):166-73. PubMed ID: 8646567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endogenous peripheral antinociception in early inflammation is not limited by the number of opioid-containing leukocytes but by opioid receptor expression.
    Brack A; Rittner HL; Machelska H; Shaqura M; Mousa SA; Labuz D; Zöllner C; Schäfer M; Stein C
    Pain; 2004 Mar; 108(1-2):67-75. PubMed ID: 15109509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antinociception by neutrophil-derived opioid peptides in noninflamed tissue--role of hypertonicity and the perineurium.
    Rittner HL; Hackel D; Yamdeu RS; Mousa SA; Stein C; Schäfer M; Brack A
    Brain Behav Immun; 2009 May; 23(4):548-57. PubMed ID: 19233260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superior control of inflammatory pain by corticotropin-releasing factor receptor 1 via opioid peptides in distinct pain-relevant brain areas.
    Mousa SA; Khalefa BI; Shaqura M; Al-Madol M; Treskatsch S; Schäfer M
    J Neuroinflammation; 2022 Jun; 19(1):148. PubMed ID: 35705992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an effective topical liposomal formulation for localized analgesia and anti-inflammatory actions in the Complete Freund's Adjuvant rodent model of acute inflammatory pain.
    Iwaszkiewicz KS; Hua S
    Pain Physician; 2014; 17(6):E719-35. PubMed ID: 25415787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRF alters the infundibular LHRH secretory system from the medial preoptic area of female rats: possible involvement of opioid receptors.
    Rivest S; Plotsky PM; Rivier C
    Neuroendocrinology; 1993; 57(2):236-46. PubMed ID: 8389996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.