These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 8650546)

  • 1. Structural basis of ligand discrimination by two related RNA aptamers resolved by NMR spectroscopy.
    Yang Y; Kochoyan M; Burgstaller P; Westhof E; Famulok M
    Science; 1996 May; 272(5266):1343-7. PubMed ID: 8650546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural probing and damage selection of citrulline- and arginine-specific RNA aptamers identify base positions required for binding.
    Burgstaller P; Kochoyan M; Famulok M
    Nucleic Acids Res; 1995 Dec; 23(23):4769-76. PubMed ID: 8532517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, recognition and adaptive binding in RNA aptamer complexes.
    Patel DJ; Suri AK; Jiang F; Jiang L; Fan P; Kumar RA; Nonin S
    J Mol Biol; 1997 Oct; 272(5):645-64. PubMed ID: 9368648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity.
    Geiger A; Burgstaller P; von der Eltz H; Roeder A; Famulok M
    Nucleic Acids Res; 1996 Mar; 24(6):1029-36. PubMed ID: 8604334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aptamer structures from A to zeta.
    Feigon J; Dieckmann T; Smith FW
    Chem Biol; 1996 Aug; 3(8):611-7. PubMed ID: 8807893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis of DNA folding and recognition in an AMP-DNA aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP.
    Lin CH; Patel DJ
    Chem Biol; 1997 Nov; 4(11):817-32. PubMed ID: 9384529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution structure of an ATP-binding RNA aptamer reveals a novel fold.
    Dieckmann T; Suzuki E; Nakamura GK; Feigon J
    RNA; 1996 Jul; 2(7):628-40. PubMed ID: 8756406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular recognition in the FMN-RNA aptamer complex.
    Fan P; Suri AK; Fiala R; Live D; Patel DJ
    J Mol Biol; 1996 May; 258(3):480-500. PubMed ID: 8642604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition of nucleic acid bases and base-pairs by hydrogen bonding to amino acid side-chains.
    Cheng AC; Chen WW; Fuhrmann CN; Frankel AD
    J Mol Biol; 2003 Apr; 327(4):781-96. PubMed ID: 12654263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA folding topology and intermolecular contacts in the AMP-RNA aptamer complex.
    Jiang F; Fiala R; Live D; Kumar RA; Patel DJ
    Biochemistry; 1996 Oct; 35(40):13250-66. PubMed ID: 8855964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutant ATP-binding RNA aptamers reveal the structural basis for ligand binding.
    Dieckmann T; Butcher SE; Sassanfar M; Szostak JW; Feigon J
    J Mol Biol; 1997 Oct; 273(2):467-78. PubMed ID: 9344753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A double chain reversal loop and two diagonal loops define the architecture of a unimolecular DNA quadruplex containing a pair of stacked G(syn)-G(syn)-G(anti)-G(anti) tetrads flanked by a G-(T-T) Triad and a T-T-T triple.
    Kuryavyi V; Majumdar A; Shallop A; Chernichenko N; Skripkin E; Jones R; Patel DJ
    J Mol Biol; 2001 Jun; 310(1):181-94. PubMed ID: 11419945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformation of the TAR RNA-arginine complex by NMR spectroscopy.
    Puglisi JD; Tan R; Calnan BJ; Frankel AD; Williamson JR
    Science; 1992 Jul; 257(5066):76-80. PubMed ID: 1621097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of planar and nonplanar ligands in the malachite green-RNA aptamer complex.
    Flinders J; DeFina SC; Brackett DM; Baugh C; Wilson C; Dieckmann T
    Chembiochem; 2004 Jan; 5(1):62-72. PubMed ID: 14695514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex.
    Jiang F; Kumar RA; Jones RA; Patel DJ
    Nature; 1996 Jul; 382(6587):183-6. PubMed ID: 8700212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arginine to citrulline replacement in substrates of phosphorylase kinase.
    Bartleson C; Luo S; Graves DJ; Martin BL
    Biochim Biophys Acta; 2000 Jul; 1480(1-2):23-8. PubMed ID: 11004553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An intermolecular base triple as the basis of ligand specificity and affinity in the guanine- and adenine-sensing riboswitch RNAs.
    Noeske J; Richter C; Grundl MA; Nasiri HR; Schwalbe H; Wöhnert J
    Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1372-7. PubMed ID: 15665103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A network of heterogeneous hydrogen bonds in GNRA tetraloops.
    Jucker FM; Heus HA; Yip PF; Moors EH; Pardi A
    J Mol Biol; 1996 Dec; 264(5):968-80. PubMed ID: 9000624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ni2+-binding RNA motifs with an asymmetric purine-rich internal loop and a G-A base pair.
    Hofmann HP; Limmer S; Hornung V; Sprinzl M
    RNA; 1997 Nov; 3(11):1289-300. PubMed ID: 9409620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 1.3 A crystal structure of a biotin-binding pseudoknot and the basis for RNA molecular recognition.
    Nix J; Sussman D; Wilson C
    J Mol Biol; 2000 Mar; 296(5):1235-44. PubMed ID: 10698630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.