BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 8651497)

  • 1. Three-dimensional motional stabilization in the trapping field of an open-ended trapped-ion cell: application to the remeasurement experiment in Fourier transform ion cyclotron resonance mass spectrometry.
    Vartanian VH; Laude DA
    Anal Chem; 1996 Apr; 68(8):1321-7. PubMed ID: 8651497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell geometry considerations for the Fourier transform ion cyclotron resonance mass spectrometry remeasurement experiment.
    Campbell VL; Guan Z; Vartanian VH; Laude DA
    Anal Chem; 1995 Jan; 67(2):420-5. PubMed ID: 7856885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitation modes for fourier transform-ion cyclotron resonance mass spectrometry.
    Schweikhard L; Marshall AG
    J Am Soc Mass Spectrom; 1993 Jun; 4(6):433-52. PubMed ID: 24235002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of axial kinetic energy induced perturbations on observed cyclotron frequency.
    Kaiser NK; Weisbrod CR; Webb BN; Bruce JE
    J Am Soc Mass Spectrom; 2008 Apr; 19(4):467-78. PubMed ID: 18262433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remeasurement of ions using quadrupolar excitation Fourier transform ion cyclotron resonance spectrometry.
    Speir JP; Gorman GS; Pitsenberger CC; Turner CA; Wang PP; Amster IJ
    Anal Chem; 1993 Jul; 65(13):1746-52. PubMed ID: 8368526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulated ion trajectory and induced signal in ion cyclotron resonance ion traps. Effect of ion initial axial position on ion coherence, induced signal, and radial or z ejection in a cubic trap.
    Xiang X; Marshall AG
    J Am Soc Mass Spectrom; 1994 Sep; 5(9):807-13. PubMed ID: 24222028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elimination of z-ejection in Fourier transform ion cyclotron resonance mass spectrometry by radio frequency electric field shimming.
    Wang MD; Marshall AG
    Anal Chem; 1990 Mar; 62(5):515-20. PubMed ID: 2316871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking the Magnetron Motion in FT-ICR Mass Spectrometry.
    Jertz R; Friedrich J; Kriete C; Nikolaev EN; Baykut G
    J Am Soc Mass Spectrom; 2015 Aug; 26(8):1349-66. PubMed ID: 25971670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fourier transform ion cyclotron resonance mass spectrometry: a primer.
    Marshall AG; Hendrickson CL; Jackson GS
    Mass Spectrom Rev; 1998; 17(1):1-35. PubMed ID: 9768511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective parent ion axialization for improved efficiency of collision-induced dissociation in laser desorption-ionization fourier transform ion cyclotron resonance mass spectrometry.
    Wood TD; Ross CW; Marshall AG
    J Am Soc Mass Spectrom; 1994 Oct; 5(10):900-7. PubMed ID: 24226236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High performance fourier transform ion cyclotron resonance mass spectrometry via a single trap electrode.
    Vartanian VH; Laude DA
    J Am Soc Mass Spectrom; 1995 Sep; 6(9):812-21. PubMed ID: 24214424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FT-ICR mass spectrometry: Superconducting magnet, external ion source, ion-molecule reactions, and ion-ion traps.
    Wanczek KP; Kanawati B
    Mass Spectrom Rev; 2022 Mar; 41(2):338-351. PubMed ID: 33521990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trapped-ion cell with improved DC potential harmonicity for FT-ICR MS.
    Tolmachev AV; Robinson EW; Wu S; Kang H; Lourette NM; Pasa-Tolić L; Smith RD
    J Am Soc Mass Spectrom; 2008 Apr; 19(4):586-97. PubMed ID: 18296061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fourier transform ion cyclotron resonance mass spectrometry at the true cyclotron frequency.
    Nagornov KO; Tsybin OY; Nicol E; Kozhinov AN; Tsybin YO
    Mass Spectrom Rev; 2022 Mar; 41(2):314-337. PubMed ID: 33462876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion detection by Fourier transform ion cyclotron resonance: the effect of initial radial velocity on the coherent ion packet.
    Hanson CD; Kerley EL; Castro ME; Russell DH
    Anal Chem; 1989 Sep; 61(18):2040-6. PubMed ID: 2802157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collision induced ion ejection in an FTICR trapped-ion cell.
    Arkin CR; Laude DA
    J Am Soc Mass Spectrom; 2005 Mar; 16(3):422-30. PubMed ID: 15734337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A "screened" electrostatic ion trap for enhanced mass resolution, mass accuracy, reproducibility, and upper mass limit in Fourier transform ion cyclotron resonance mass spectrometry.
    Wang M; Marshall AG
    Anal Chem; 1989 Jun; 61(11):1288-93. PubMed ID: 2757208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 'hybrid cell': a new compensated infinity cell for larger radius ion excitation in Fourier transform ion cyclotron resonance mass spectrometry.
    Kim S; Choi MC; Hur M; Kim HS; Yoo JS; Hendrickson CL; Marshall AG
    Rapid Commun Mass Spectrom; 2008 May; 22(9):1423-9. PubMed ID: 18395882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel Fourier transform ion cyclotron resonance mass spectrometer with improved ion trapping and detection capabilities.
    Kaiser NK; Skulason GE; Weisbrod CR; Bruce JE
    J Am Soc Mass Spectrom; 2009 May; 20(5):755-62. PubMed ID: 19200753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamically harmonized FT-ICR cell with specially shaped electrodes for compensation of inhomogeneity of the magnetic field. Computer simulations of the electric field and ion motion dynamics.
    Kostyukevich YI; Vladimirov GN; Nikolaev EN
    J Am Soc Mass Spectrom; 2012 Dec; 23(12):2198-207. PubMed ID: 22993044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.