These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 8651913)
41. Cerebroside elicitors found in diverse phytopathogens activate defense responses in rice plants. Umemura K; Ogawa N; Yamauchi T; Iwata M; Shimura M; Koga J Plant Cell Physiol; 2000 Jun; 41(6):676-83. PubMed ID: 10945336 [TBL] [Abstract][Full Text] [Related]
42. Isolation of a monocot 3-hydroxy-3-methylglutaryl coenzyme A reductase gene that is elicitor-inducible. Nelson AJ; Doerner PW; Zhu Q; Lamb CJ Plant Mol Biol; 1994 Jun; 25(3):401-12. PubMed ID: 8049366 [TBL] [Abstract][Full Text] [Related]
43. Sakuranetin and its therapeutic potentials - a comprehensive review. Junaid M; Basak B; Akter Y; Afrose SS; Nahrin A; Emran R; Shahinozzaman M; Tawata S Z Naturforsch C J Biosci; 2023 Jan; 78(1-2):27-48. PubMed ID: 35844107 [TBL] [Abstract][Full Text] [Related]
44. Flavonoid methylation: a novel 4'-O-methyltransferase from Catharanthus roseus, and evidence that partially methylated flavanones are substrates of four different flavonoid dioxygenases. Schröder G; Wehinger E; Lukacin R; Wellmann F; Seefelder W; Schwab W; Schröder J Phytochemistry; 2004 Apr; 65(8):1085-94. PubMed ID: 15110688 [TBL] [Abstract][Full Text] [Related]
45. Identification of UV-Induced Diterpenes Including a New Diterpene Phytoalexin, Phytocassane F, from Rice Leaves by Complementary GC/MS and LC/MS Approaches. Horie K; Inoue Y; Sakai M; Yao Q; Tanimoto Y; Koga J; Toshima H; Hasegawa M J Agric Food Chem; 2015 Apr; 63(16):4050-9. PubMed ID: 25865436 [TBL] [Abstract][Full Text] [Related]
46. Multiple phytohormones and phytoalexins are involved in disease resistance to Magnaporthe oryzae invaded from roots in rice. Duan L; Liu H; Li X; Xiao J; Wang S Physiol Plant; 2014 Nov; 152(3):486-500. PubMed ID: 24684436 [TBL] [Abstract][Full Text] [Related]
47. Phenolic Phytoalexins in Rice: Biological Functions and Biosynthesis. Cho MH; Lee SW Int J Mol Sci; 2015 Dec; 16(12):29120-33. PubMed ID: 26690131 [TBL] [Abstract][Full Text] [Related]
48. Natural variation of diterpenoid phytoalexins in rice: Aromatic diterpenoid phytoalexins in specific cultivars. Kariya K; Fujita A; Ueno M; Yoshikawa T; Teraishi M; Taniguchi Y; Ueno K; Ishihara A Phytochemistry; 2023 Jul; 211():113708. PubMed ID: 37149120 [TBL] [Abstract][Full Text] [Related]
49. Jasmonic Acid, Abscisic Acid, and Salicylic Acid Are Involved in the Phytoalexin Responses of Rice to Fusarium fujikuroi, a High Gibberellin Producer Pathogen. Siciliano I; Amaral Carneiro G; Spadaro D; Garibaldi A; Gullino ML J Agric Food Chem; 2015 Sep; 63(37):8134-42. PubMed ID: 26323788 [TBL] [Abstract][Full Text] [Related]
50. Sakuranetin protects rice from brown planthopper attack by depleting its beneficial endosymbionts. Liu M; Hong G; Li H; Bing X; Chen Y; Jing X; Gershenzon J; Lou Y; Baldwin IT; Li R Proc Natl Acad Sci U S A; 2023 Jun; 120(23):e2305007120. PubMed ID: 37256931 [TBL] [Abstract][Full Text] [Related]
51. Functional identification of rice syn-copalyl diphosphate synthase and its role in initiating biosynthesis of diterpenoid phytoalexin/allelopathic natural products. Xu M; Hillwig ML; Prisic S; Coates RM; Peters RJ Plant J; 2004 Aug; 39(3):309-18. PubMed ID: 15255861 [TBL] [Abstract][Full Text] [Related]
52. Identification of syn-pimara-7,15-diene synthase reveals functional clustering of terpene synthases involved in rice phytoalexin/allelochemical biosynthesis. Wilderman PR; Xu M; Jin Y; Coates RM; Peters RJ Plant Physiol; 2004 Aug; 135(4):2098-105. PubMed ID: 15299118 [TBL] [Abstract][Full Text] [Related]
53. Formation and biological properties of isoflavonoid phytoalexins. Smith DA; Banks SW Prog Clin Biol Res; 1986; 213():113-24. PubMed ID: 3520582 [No Abstract] [Full Text] [Related]
54. Two novel genes rapidly and transiently activated in suspension-cultured rice cells by treatment with N-acetylchitoheptaose, a biotic elicitor for phytoalexin production. Minami E; Kuchitsu K; He DY; Kouchi H; Midoh N; Ohtsuki Y; Shibuya N Plant Cell Physiol; 1996 Jun; 37(4):563-7. PubMed ID: 8759920 [TBL] [Abstract][Full Text] [Related]
55. Differences in the recognition of glucan elicitor signals between rice and soybean: beta-glucan fragments from the rice blast disease fungus Pyricularia oryzae that elicit phytoalexin biosynthesis in suspension-cultured rice cells. Yamaguchi T; Yamada A; Hong N; Ogawa T; Ishii T; Shibuya N Plant Cell; 2000 May; 12(5):817-26. PubMed ID: 10810152 [TBL] [Abstract][Full Text] [Related]
56. Antimicrobial activity of UV-induced phenylamides from rice leaves. Park HL; Yoo Y; Hahn TR; Bhoo SH; Lee SW; Cho MH Molecules; 2014 Nov; 19(11):18139-51. PubMed ID: 25383752 [TBL] [Abstract][Full Text] [Related]
57. Cholic acid, a bile acid elicitor of hypersensitive cell death, pathogenesis-related protein synthesis, and phytoalexin accumulation in rice. Koga J; Kubota H; Gomi S; Umemura K; Ohnishi M; Kono T Plant Physiol; 2006 Apr; 140(4):1475-83. PubMed ID: 16461384 [TBL] [Abstract][Full Text] [Related]
58. Cerebrosides A and C, sphingolipid elicitors of hypersensitive cell death and phytoalexin accumulation in rice plants. Koga J; Yamauchi T; Shimura M; Ogawa N; Oshima K; Umemura K; Kikuchi M; Ogasawara N J Biol Chem; 1998 Nov; 273(48):31985-91. PubMed ID: 9822670 [TBL] [Abstract][Full Text] [Related]
59. Essential role of the small GTPase Rac in disease resistance of rice. Ono E; Wong HL; Kawasaki T; Hasegawa M; Kodama O; Shimamoto K Proc Natl Acad Sci U S A; 2001 Jan; 98(2):759-64. PubMed ID: 11149940 [TBL] [Abstract][Full Text] [Related]
60. Biofortified Rice Provides Rich Sakuranetin in Endosperm. Zhao Y; Hu J; Zhou Z; Li L; Zhang X; He Y; Zhang C; Wang J; Hong G Rice (N Y); 2024 Mar; 17(1):19. PubMed ID: 38430431 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]