BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 8651922)

  • 1. Nitric oxide inhibits ATP-dependent Ca2+ uptake into platelet membrane vesicles.
    Pernollet MG; Lantoine F; Devynck MA
    Biochem Biophys Res Commun; 1996 May; 222(3):780-5. PubMed ID: 8651922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelin-3 decreases Ca2+ uptake in platelet membrane vesicles.
    Pernollet MG; Astarie-Dequeker C; Le Breton G; Devynck MA
    J Cardiovasc Pharmacol; 1995; 26 Suppl 3():S145-7. PubMed ID: 8587346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth factor-induced Ca2+ responses are differentially modulated by nitric oxide via activation of a cyclic GMP-dependent pathway.
    Clementi E; Sciorati C; Nisticò G
    Mol Pharmacol; 1995 Dec; 48(6):1068-77. PubMed ID: 8848007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective inhibition of oxalate-stimulated Ca2+ transport by cyclopiazonic acid and thapsigargin in smooth muscle microsomes.
    Darby PJ; Kwan CY; Daniel EE
    Can J Physiol Pharmacol; 1996 Feb; 74(2):182-92. PubMed ID: 8723031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of authentic nitric oxide on basal cytosolic [Ca2+] and Ca2+ release from internal stores in human platelets.
    Le Quan Sang KH; Lantoine F; Devynck MA
    Br J Pharmacol; 1996 Dec; 119(7):1361-6. PubMed ID: 8968544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitor of sarco-endoplasmic reticulum Ca2+-ATPase thapsigargin stimulates production of nitric oxide and secretion of interferon-gamma.
    Kmonícková E; Melkusová P; Harmatha J; Vokác K; Farghali H; Zídek Z
    Eur J Pharmacol; 2008 Jun; 588(1):85-92. PubMed ID: 18457829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capacitative Ca2+ entry in human platelets is resistant to nitric oxide.
    Okamoto Y; Ninomiya H; Miwa S; Masaki T
    Biochem Biophys Res Commun; 1995 Jul; 212(1):90-6. PubMed ID: 7612023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of nitric oxide on ATP-induced Ca2+ signaling in outer hair cells of the guinea pig cochlea.
    Shen J; Harada N; Nakazawa H; Kaneko T; Izumikawa M; Yamashita T
    Brain Res; 2006 Apr; 1081(1):101-12. PubMed ID: 16500627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interference of neutrophil-platelet interaction by YC-1: a cGMP-dependent manner on heterotypic cell-cell interaction.
    Liao CH; Cheng JT; Teng CM
    Eur J Pharmacol; 2005 Sep; 519(1-2):158-67. PubMed ID: 16112105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of endothelial nitric oxide synthase: involvement of protein kinase G 1 beta, serine 116 phosphorylation and lipid structures.
    John TA; Ibe BO; Raj JU
    Clin Exp Pharmacol Physiol; 2008 Feb; 35(2):148-58. PubMed ID: 17892503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide: inhibitory effects on endothelial cell calcium signaling, prostaglandin I2 production and nitric oxide synthase expression.
    Takeuchi K; Watanabe H; Tran QK; Ozeki M; Sumi D; Hayashi T; Iguchi A; Ignarro LJ; Ohashi K; Hayashi H
    Cardiovasc Res; 2004 Apr; 62(1):194-201. PubMed ID: 15023566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological characterization of 45Ca2+ and 65Zn2+ transport by lobster hepatopancreatic endoplasmic reticulum.
    Mandal PK; Mandal A; Ahearn GA
    J Exp Zool A Comp Exp Biol; 2005 Jul; 303(7):515-26. PubMed ID: 15945071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide inhibits capacitative cation influx in human platelets by promoting sarcoplasmic/endoplasmic reticulum Ca2+-ATPase-dependent refilling of Ca2+ stores.
    Trepakova ES; Cohen RA; Bolotina VM
    Circ Res; 1999 Feb; 84(2):201-9. PubMed ID: 9933252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide induces transient Ca2+ changes in endothelial cells independent of cGMP.
    Volk T; Mäding K; Hensel M; Kox WJ
    J Cell Physiol; 1997 Sep; 172(3):296-305. PubMed ID: 9284949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of skeletal muscle sarcoplasmic reticulum Ca2+-ATPase by nitric oxide.
    Ishii T; Sunami O; Saitoh N; Nishio H; Takeuchi T; Hata F
    FEBS Lett; 1998 Nov; 440(1-2):218-22. PubMed ID: 9862458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of uncoupling endothelial nitric oxide synthase on calcium homeostasis in aged porcine endothelial cells.
    Perrier E; Fournet-Bourguignon MP; Royere E; Molez S; Reure H; Lesage L; Gosgnach W; Frapart Y; Boucher JL; Villeneuve N; Vilaine JP
    Cardiovasc Res; 2009 Apr; 82(1):133-42. PubMed ID: 19176602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consequences of the inhibition of the sarcoplasmic reticulum calcium ATPase on cardiac function and coronary flow in rabbit isolated perfused heart: role of calcium and nitric oxide.
    Khandoudi N; Percevault-Albadine J; Bril A
    J Mol Cell Cardiol; 1998 Oct; 30(10):1967-77. PubMed ID: 9799651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular calcium mobilization is triggered by clustering of membrane glycoproteins in concanavalin A-stimulated platelets.
    Ramaschi G; Torti M; Sinigaglia F; Balduini C
    Cell Biochem Funct; 1993 Dec; 11(4):241-9. PubMed ID: 8275548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a cyclic GMP-independent mechanism in the anti-platelet action of S-nitrosoglutathione.
    Gordge MP; Hothersall JS; Noronha-Dutra AA
    Br J Pharmacol; 1998 May; 124(1):141-8. PubMed ID: 9630353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SK&F 96365 inhibits intracellular Ca2+ pumps and raises cytosolic Ca2+ concentration without production of nitric oxide and von Willebrand factor.
    Iouzalen L; Lantoine F; Pernollet MG; Millanvoye-Van Brussel E; Devynck MA; David-Dufilho M
    Cell Calcium; 1996 Dec; 20(6):501-8. PubMed ID: 8985595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.