These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 8652133)

  • 1. Regulation of the cellulolytic activity of Eubacterium cellulosolvens 5494: a review.
    Anderson KL; Blair BG
    SAAS Bull Biochem Biotechnol; 1996; 9():57-62. PubMed ID: 8652133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical characterization of cellulose-binding proteins (CBPA and CBPB) from the rumen cellulolytic bacterium Eubacterium cellulosolvens 5.
    Yoshimatsu M; Toyoda A; Onizawa N; Nakamura Y; Minato H
    Biosci Biotechnol Biochem; 2007 Oct; 71(10):2577-80. PubMed ID: 17928689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A possible role of cellulose-binding protein A (CBPA) in the adhesion of Eubacterium cellulosolvens 5 to cellulose.
    Toyoda A; Takano K; Minato H
    J Gen Appl Microbiol; 2003 Aug; 49(4):245-50. PubMed ID: 14581993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic manipulation of anaerobic cellulolytic bacteria.
    Anderson KL
    SAAS Bull Biochem Biotechnol; 1997; 10():33-6. PubMed ID: 9274059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and sequencing of the gene for cellobiose 2-epimerase from a ruminal strain of Eubacterium cellulosolvens.
    Taguchi H; Senoura T; Hamada S; Matsui H; Kobayashi Y; Watanabe J; Wasaki J; Ito S
    FEMS Microbiol Lett; 2008 Oct; 287(1):34-40. PubMed ID: 18710396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment of Eubacterium cellulosolvens in the digestive tract of axenic and meroxenic mice: influence of feed cellulose content.
    Boulahrouf A; Fonty G; Gouet P
    FEMS Microbiol Lett; 1991 May; 64(1):29-33. PubMed ID: 1855647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulose and cellodextrin utilization by the cellulolytic bacterium Cytophaga hutchisonii.
    Zhu Y; Li H; Zhou H; Chen G; Liu W
    Bioresour Technol; 2010 Aug; 101(16):6432-7. PubMed ID: 20362433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conjugal transfer of transposon Tn1545 into the cellulolytic bacterium Eubacterium cellulosolvens.
    Anderson KL; Megehee JA; Varel VH
    Lett Appl Microbiol; 1998 Jan; 26(1):35-7. PubMed ID: 9489031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Use of glucose and cellobiose by 3 strains of Fibrobacter succinogenes].
    Gaudet G; Cheng KJ
    Reprod Nutr Dev; 1990; Suppl 2():201s-202s. PubMed ID: 2206331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of cellobiose, glucose, and cellulose on the survival of Fibrobacter succinogenes A3C cultures grown under ammonia limitation.
    Thomas S; Russell JB
    Curr Microbiol; 2004 Mar; 48(3):219-23. PubMed ID: 15057469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of cellulase synthesis in Acetivibrio cellulolyticus.
    Saddler JN; Khan AW; Martin SM
    Microbios; 1980; 28(112):97-106. PubMed ID: 7207219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the cellulose-binding and the cell wall-binding domains of Eubacterium cellulosolvens 5 cellulose-binding protein A (CBPA).
    Toyoda A; Minato H
    FEMS Microbiol Lett; 2002 Aug; 214(1):113-8. PubMed ID: 12204381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of cellobiose dehydrogenases from the white-rot fungi Trametes pubescens and Trametes villosa.
    Ludwig R; Salamon A; Varga J; Zámocky M; Peterbauer CK; Kulbe KD; Haltrich D
    Appl Microbiol Biotechnol; 2004 Apr; 64(2):213-22. PubMed ID: 14666391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of strains of Eubacterium cellulosolvens from the rumen.
    Prins RA; Van Vugt F; Hungate RE; Van Vorstenbosch CJ
    Antonie Van Leeuwenhoek; 1972; 38(2):153-61. PubMed ID: 4537442
    [No Abstract]   [Full Text] [Related]  

  • 15. Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia.
    Desvaux M
    FEMS Microbiol Rev; 2005 Sep; 29(4):741-64. PubMed ID: 16102601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of cellobiose and glucose on cellulose hydrolysis by both growing and resting cells of Bacteroides cellulosolvens.
    Murray WD
    Biotechnol Bioeng; 1987 Jun; 29(9):1151-4. PubMed ID: 18576570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling intrinsic kinetics of enzymatic cellulose hydrolysis.
    Peri S; Karra S; Lee YY; Karim MN
    Biotechnol Prog; 2007; 23(3):626-37. PubMed ID: 17465526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of cellulose-inducible structures of Clostridium cellulovorans.
    Blair BG; Anderson KL
    Can J Microbiol; 1999 Mar; 45(3):242-9. PubMed ID: 10408097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Ultrastructural surface restructurings of the fungus Aspergillus terreus growing on cellulose-containing substrate].
    Agabekian EL; Dmitriev VV; Ratner EN; Gorkina NB
    Mikrobiologiia; 1982; 51(3):472-6. PubMed ID: 7121328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Clostridium alkalicellum sp. nov., an obligately alkaliphilic cellulolytic bacterium from a soda lake in the Baikal region].
    Zhilina TN; Kevbrin VV; Turova TP; Lysenko AM; Kostrikina NA; Zavarzin GA
    Mikrobiologiia; 2005; 74(5):642-53. PubMed ID: 16315983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.