BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 8652524)

  • 1. Fatty acid transfer in taurodeoxycholate mixed micelles.
    Narayanan VS; Storch J
    Biochemistry; 1996 Jun; 35(23):7466-73. PubMed ID: 8652524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect on the partition equilibrium of various drugs by the formation of mixed bile salt/phosphatidylcholine/fatty acid micelles. A characterization by micellar affinity capillary electrophoresis. Part IV.
    Schawrz MA; Raith K; Dongowski G; Neubert RH
    J Chromatogr A; 1998 Jun; 809(1-2):219-29. PubMed ID: 9677716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfer of long-chain fluorescent free fatty acids between unilamellar vesicles.
    Storch J; Kleinfeld AM
    Biochemistry; 1986 Apr; 25(7):1717-26. PubMed ID: 3707905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absorption properties of micellar lipid metabolites into Caco2 cells.
    Tsuzuki W
    Lipids; 2007 Jul; 42(7):613-9. PubMed ID: 17582542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acids and anionic phospholipids alter the palmitoyl coenzyme A kinetics of hepatic monoacylglycerol acyltransferase in Triton X-100 mixed micelles.
    Coleman RA; Wang P; Bhat BG
    Biochemistry; 1996 Jul; 35(29):9576-83. PubMed ID: 8755739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake of micellar long-chain fatty acid and sn-2-monoacylglycerol into human intestinal Caco-2 cells exhibits characteristics of protein-mediated transport.
    Murota K; Storch J
    J Nutr; 2005 Jul; 135(7):1626-30. PubMed ID: 15987840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer of long-chain fluorescent fatty acids between small and large unilamellar vesicles.
    Kleinfeld AM; Storch J
    Biochemistry; 1993 Mar; 32(8):2053-61. PubMed ID: 8448164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the uptake of fatty acids by brush border membranes of the rabbit intestine.
    Proulx P; Aubry H; Brglez I; Williamson DG
    Can J Biochem Cell Biol; 1985 Apr; 63(4):249-56. PubMed ID: 4016571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flip-flop is slow and rate limiting for the movement of long chain anthroyloxy fatty acids across lipid vesicles.
    Kleinfeld AM; Chu P; Storch J
    Biochemistry; 1997 May; 36(19):5702-11. PubMed ID: 9153410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatty acid uptake and metabolism in CaCo-2 cells: eicosapentaenoic acid (20:5(n-3)) and oleic acid (18:1(n-9)) presented in association with micelles or albumin.
    Ranheim T; Gedde-Dahl A; Rustan AC; Drevon CA
    Biochim Biophys Acta; 1994 Jun; 1212(3):295-304. PubMed ID: 8199200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistant Maltodextrin Decreases Micellar Solubility of Lipids and Diffusion of Bile Salt Micelles and Suppresses Incorporation of Micellar Fatty Acids into Caco-2 Cells.
    Ikeda I; Tamakuni K; Sakuma T; Ozawa R; Inoue N; Kishimoto Y
    J Nutr Sci Vitaminol (Tokyo); 2016; 62(5):335-340. PubMed ID: 27928121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical-chemical behavior of dietary and biliary lipids during intestinal digestion and absorption. 2. Phase analysis and aggregation states of luminal lipids during duodenal fat digestion in healthy adult human beings.
    Hernell O; Staggers JE; Carey MC
    Biochemistry; 1990 Feb; 29(8):2041-56. PubMed ID: 2328238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical-chemical behavior of dietary and biliary lipids during intestinal digestion and absorption. 1. Phase behavior and aggregation states of model lipid systems patterned after aqueous duodenal contents of healthy adult human beings.
    Staggers JE; Hernell O; Stafford RJ; Carey MC
    Biochemistry; 1990 Feb; 29(8):2028-40. PubMed ID: 2328237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics and mechanism of long-chain fatty acid transport into phosphatidylcholine vesicles from various donor systems.
    Thomas RM; Baici A; Werder M; Schulthess G; Hauser H
    Biochemistry; 2002 Feb; 41(5):1591-601. PubMed ID: 11814353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intestinal cholesterol uptake from phospholipid vesicles and from simple and mixed micelles.
    Thomson AB; Cleland L
    Lipids; 1981 Dec; 16(12):881-7. PubMed ID: 7329208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholesterol enhances membrane-damaging properties of model bile by increasing the intervesicular-intermixed micellar concentration of hydrophobic bile salts.
    Narain PK; DeMaria EJ; Heuman DM
    J Surg Res; 1999 Jun; 84(1):112-9. PubMed ID: 10334899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phospholipid transfer between phosphatidylcholine-taurocholate mixed micelles.
    Nichols JW
    Biochemistry; 1988 May; 27(11):3925-31. PubMed ID: 3415964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural mechanisms of bile salt-induced growth of small unilamellar cholesterol-lecithin vesicles.
    Luk AS; Kaler EW; Lee SP
    Biochemistry; 1997 May; 36(19):5633-44. PubMed ID: 9153403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase behavior of bile acid/lipid/water systems containing model dietary lipids.
    Nonomura Y; Nakayama K; Aoki Y; Fujimori A
    J Colloid Interface Sci; 2009 Nov; 339(1):222-9. PubMed ID: 19682701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digestion and absorption of lipids and bile acids in sheep fed stearic acid, oleic acid, or tristearin.
    Sklan D; Arieli A; Chalupa W; Kronfeld DS
    J Dairy Sci; 1985 Jul; 68(7):1667-75. PubMed ID: 4031186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.