These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 8652540)
1. Distortion of the active site of chymotrypsin complexed with a serpin. Plotnick MI; Mayne L; Schechter NM; Rubin H Biochemistry; 1996 Jun; 35(23):7586-90. PubMed ID: 8652540 [TBL] [Abstract][Full Text] [Related]
2. Role of the P2 residue in determining the specificity of serpins. Djie MZ; Le Bonniec BF; Hopkins PC; Hipler K; Stone SR Biochemistry; 1996 Sep; 35(35):11461-9. PubMed ID: 8784202 [TBL] [Abstract][Full Text] [Related]
3. Role of the P6-P3' region of the serpin reactive loop in the formation and breakdown of the inhibitory complex. Plotnick MI; Schechter NM; Wang ZM; Liu X; Rubin H Biochemistry; 1997 Nov; 36(47):14601-8. PubMed ID: 9398179 [TBL] [Abstract][Full Text] [Related]
4. Properties of the His57-Asp102 dyad of rat trypsin D189S in the zymogen, activated enzyme, and alpha1-proteinase inhibitor complexed forms. Kaslik G; Westler WM; Gráf L; Markley JL Arch Biochem Biophys; 1999 Feb; 362(2):254-64. PubMed ID: 9989934 [TBL] [Abstract][Full Text] [Related]
5. Inhibitory mechanism of serpins. Identification of steps involving the active-site serine residue of the protease. Stone SR; Le Bonniec BF J Mol Biol; 1997 Jan; 265(3):344-62. PubMed ID: 9018048 [TBL] [Abstract][Full Text] [Related]
6. The structure of a Michaelis serpin-protease complex. Ye S; Cech AL; Belmares R; Bergstrom RC; Tong Y; Corey DR; Kanost MR; Goldsmith EJ Nat Struct Biol; 2001 Nov; 8(11):979-83. PubMed ID: 11685246 [TBL] [Abstract][Full Text] [Related]
7. Heterogeneity in serpin-protease complexes as demonstrated by differences in the mechanism of complex breakdown. Plotnick MI; Samakur M; Wang ZM; Liu X; Rubin H; Schechter NM; Selwood T Biochemistry; 2002 Jan; 41(1):334-42. PubMed ID: 11772033 [TBL] [Abstract][Full Text] [Related]
8. Structural change in alpha-chymotrypsin induced by complexation with alpha 1-antichymotrypsin as seen by enhanced sensitivity to proteolysis. Stavridi ES; O'Malley K; Lukacs CM; Moore WT; Lambris JD; Christianson DW; Rubin H; Cooperman BS Biochemistry; 1996 Aug; 35(33):10608-15. PubMed ID: 8718849 [TBL] [Abstract][Full Text] [Related]
9. Viscous drag as the source of active site perturbation during protease translocation: insights into how inhibitory processes are controlled by serpin metastability. Shin JS; Yu MH J Mol Biol; 2006 Jun; 359(2):378-89. PubMed ID: 16626735 [TBL] [Abstract][Full Text] [Related]
10. Engineering an anion-binding cavity in antichymotrypsin modulates the "spring-loaded" serpin-protease interaction. Lukacs CM; Rubin H; Christianson DW Biochemistry; 1998 Mar; 37(10):3297-304. PubMed ID: 9521649 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamic criterion for the conformation of P1 residues of substrates and of inhibitors in complexes with serine proteinases. Qasim MA; Lu SM; Ding J; Bateman KS; James MN; Anderson S; Song J; Markley JL; Ganz PJ; Saunders CW; Laskowski M Biochemistry; 1999 Jun; 38(22):7142-50. PubMed ID: 10353824 [TBL] [Abstract][Full Text] [Related]
12. Structure of a serpin-protease complex shows inhibition by deformation. Huntington JA; Read RJ; Carrell RW Nature; 2000 Oct; 407(6806):923-6. PubMed ID: 11057674 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of cancer chemopreventive Bowman-Birk inhibitor in ternary complex with bovine trypsin at 2.3 A resolution. Structural basis of Janus-faced serine protease inhibitor specificity. Koepke J; Ermler U; Warkentin E; Wenzl G; Flecker P J Mol Biol; 2000 May; 298(3):477-91. PubMed ID: 10772864 [TBL] [Abstract][Full Text] [Related]
14. Role of Lys335 in the metastability and function of inhibitory serpins. Im H; Yu MH Protein Sci; 2000 May; 9(5):934-41. PubMed ID: 10850803 [TBL] [Abstract][Full Text] [Related]
16. Resistance of cathepsin L compared to elastase to proteolysis when complexed with the serpin endopin 2C, and recovery of cathepsin L activity. Hwang SR; Stoka V; Turk V; Hook V Biochem Biophys Res Commun; 2006 Feb; 340(4):1238-43. PubMed ID: 16414353 [TBL] [Abstract][Full Text] [Related]
17. Analysis of the plasma elimination kinetics and conformational stabilities of native, proteinase-complexed, and reactive site cleaved serpins: comparison of alpha 1-proteinase inhibitor, alpha 1-antichymotrypsin, antithrombin III, alpha 2-antiplasmin, angiotensinogen, and ovalbumin. Mast AE; Enghild JJ; Pizzo SV; Salvesen G Biochemistry; 1991 Feb; 30(6):1723-30. PubMed ID: 1704258 [TBL] [Abstract][Full Text] [Related]
18. Role of the catalytic serine in the interactions of serine proteinases with protein inhibitors of the serpin family. Contribution of a covalent interaction to the binding energy of serpin-proteinase complexes. Olson ST; Bock PE; Kvassman J; Shore JD; Lawrence DA; Ginsburg D; Björk I J Biol Chem; 1995 Dec; 270(50):30007-17. PubMed ID: 8530403 [TBL] [Abstract][Full Text] [Related]
19. The inhibitory specificity of human proteinase inhibitor 8 is expanded through the use of multiple reactive site residues. Dahlen JR; Foster DC; Kisiel W Biochem Biophys Res Commun; 1998 Mar; 244(1):172-7. PubMed ID: 9514892 [TBL] [Abstract][Full Text] [Related]