These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 8652543)

  • 1. Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition.
    Xu F
    Biochemistry; 1996 Jun; 35(23):7608-14. PubMed ID: 8652543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates.
    Tadesse MA; D'Annibale A; Galli C; Gentili P; Sergi F
    Org Biomol Chem; 2008 Mar; 6(5):868-78. PubMed ID: 18292878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-function studies of a Melanocarpus albomyces laccase suggest a pathway for oxidation of phenolic compounds.
    Kallio JP; Auer S; Jänis J; Andberg M; Kruus K; Rouvinen J; Koivula A; Hakulinen N
    J Mol Biol; 2009 Oct; 392(4):895-909. PubMed ID: 19563811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Inhibition mechanism of Polyporus versicolor laccase by halide ions].
    Ali Naki ; Varfolomeev SD
    Biokhimiia; 1981 Sep; 46(9):1694-702. PubMed ID: 7295828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced activity by poly(ethylene glycol) modification of Coriolopsis gallica laccase.
    Vandertol-Vanier HA; Vazquez-Duhalt R; Tinoco R; Pickard MA
    J Ind Microbiol Biotechnol; 2002 Nov; 29(5):214-20. PubMed ID: 12407453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase.
    Sakurai T; Kataoka K
    Chem Rec; 2007; 7(4):220-9. PubMed ID: 17663447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laccases and their occurrence in prokaryotes.
    Claus H
    Arch Microbiol; 2003 Mar; 179(3):145-50. PubMed ID: 12610719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability.
    Xu F; Shin W; Brown SH; Wahleithner JA; Sundaram UM; Solomon EI
    Biochim Biophys Acta; 1996 Feb; 1292(2):303-11. PubMed ID: 8597577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and characterization of laccases from the white-rot basidiomycete Dichomitus squalens.
    Périé FH; Reddy GV; Blackburn NJ; Gold MH
    Arch Biochem Biophys; 1998 May; 353(2):349-55. PubMed ID: 9606969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral and kinetic studies of the oxidation of monosubstituted phenols and anilines by recombinant Synechocystis catalase-peroxidase compound I.
    Regelsberger G; Jakopitsch C; Engleder M; Rüker F; Peschek GA; Obinger C
    Biochemistry; 1999 Aug; 38(32):10480-8. PubMed ID: 10441144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of oxidation of benzyl alcohols by the dication and radical cation of ABTS. Comparison with laccase-ABTS oxidations: an apparent paradox.
    Branchi B; Galli C; Gentili P
    Org Biomol Chem; 2005 Jul; 3(14):2604-14. PubMed ID: 15999194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined sequence and structure analysis of the fungal laccase family.
    Kumar SV; Phale PS; Durani S; Wangikar PP
    Biotechnol Bioeng; 2003 Aug; 83(4):386-94. PubMed ID: 12800133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases.
    Xu F
    J Biol Chem; 1997 Jan; 272(2):924-8. PubMed ID: 8995383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic and spectroscopic studies on the activation or inhibition effects by substituted phenolic compounds in the oxidation of aryldiamines and catechols catalyzed by Rhus vernicifera laccase.
    Casella L; Gullotti M; Monzani E; Santagostini L; Zoppellaro G; Sakurai T
    J Inorg Biochem; 2006 Dec; 100(12):2127-39. PubMed ID: 16959319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico study of structural determinants modulating the redox potential of Rigidoporus lignosus and other fungal laccases.
    Cambria MT; Gullotto D; Garavaglia S; Cambria A
    J Biomol Struct Dyn; 2012; 30(1):89-101. PubMed ID: 22571435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A pluripotent polyphenol oxidase from the melanogenic marine Alteromonas sp shares catalytic capabilities of tyrosinases and laccases.
    Sanchez-Amat A; Solano F
    Biochem Biophys Res Commun; 1997 Nov; 240(3):787-92. PubMed ID: 9398646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laccase chloride inhibition reduction by an anthraquinonic substrate.
    Enaud E; Trovaslet M; Naveau F; Decristoforo A; Bizet S; Vanhulle S; Jolivalt C
    Enzyme Microb Technol; 2011 Dec; 49(6-7):517-25. PubMed ID: 22142726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct spectrophotometric assay of laccase using diazo derivatives of guaiacol.
    Moshtaghioun SM; Haghbeen K; Sahebghadam AL; Legge RL; Khoshneviszadeh R; Farhadi S
    Anal Chem; 2011 Jun; 83(11):4200-5. PubMed ID: 21545148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shifting the optimal pH of activity for a laccase from the fungus Trametes versicolor by structure-based mutagenesis.
    Madzak C; Mimmi MC; Caminade E; Brault A; Baumberger S; Briozzo P; Mougin C; Jolivalt C
    Protein Eng Des Sel; 2006 Feb; 19(2):77-84. PubMed ID: 16368720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic characterization of the Leu513His variant of fungal laccase: effect of increased axial ligand interaction on the geometric and electronic structure of the type 1 Cu site.
    Palmer AE; Szilagyi RK; Cherry JR; Jones A; Xu F; Solomon EI
    Inorg Chem; 2003 Jun; 42(13):4006-17. PubMed ID: 12817956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.