BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 8652622)

  • 21. Production and characterization of recombinant Phanerochaete chrysosporium cellobiose dehydrogenase in the methylotrophic yeast Pichia pastoris.
    Yoshida M; Ohira T; Igarashi K; Nagasawa H; Aida K; Hallberg BM; Divne C; Nishino T; Samejima M
    Biosci Biotechnol Biochem; 2001 Sep; 65(9):2050-7. PubMed ID: 11676020
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemical oxidation of water by a cellobiose dehydrogenase from Phanerochaete chrysosporium.
    Feng J; Himmel ME; Decker SR
    Biotechnol Lett; 2005 Apr; 27(8):555-60. PubMed ID: 15973489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemical evidence of self-substrate inhibition as functions regulation for cellobiose dehydrogenase from Phanerochaete chrysosporium.
    Stoica L; Ruzgas T; Gorton L
    Bioelectrochemistry; 2009 Sep; 76(1-2):42-52. PubMed ID: 19640808
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of cellobiose dehydrogenase and its FAD-domain from the ligninolytic basidiomycete Pycnoporus sanguineus.
    Sulej J; Janusz G; Osińska-Jaroszuk M; Małek P; Mazur A; Komaniecka I; Choma A; Rogalski J
    Enzyme Microb Technol; 2013 Dec; 53(6-7):427-37. PubMed ID: 24315647
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural insights of a cellobiose dehydrogenase enzyme from the basidiomycetes fungus Termitomyces clypeatus.
    Banerjee S; Roy A; Madhusudhan MS; Bairagya HR; Roy A
    Comput Biol Chem; 2019 Oct; 82():65-73. PubMed ID: 31272063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A critical review of cellobiose dehydrogenases.
    Henriksson G; Johansson G; Pettersson G
    J Biotechnol; 2000 Mar; 78(2):93-113. PubMed ID: 10725534
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Localization of cellobiose dehydrogenase in cellulose-grown cultures of Phanerochaete chrysosporium.
    Igarashi K; Samejima M; Saburi Y; Habu N; Eriksson KE
    Fungal Genet Biol; 1997 Apr; 21(2):214-22. PubMed ID: 9228789
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cloning and sequencing of a gene encoding cellobiose dehydrogenase from Trametes versicolor.
    Dumonceaux TJ; Bartholomew KA; Charles TC; Moukha SM; Archibald FS
    Gene; 1998 Apr; 210(2):211-9. PubMed ID: 9573367
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cellobiose dehydrogenase from Phanerochaete chrysosporium is encoded by two allelic variants.
    Li B; Nagalla SR; Renganathan V
    Appl Environ Microbiol; 1997 Feb; 63(2):796-9. PubMed ID: 9023960
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Is cellobiose oxidase from Phanerochaete chrysosporium a one-electron reductase?
    Henriksson G; Johansson G; Pettersson G
    Biochim Biophys Acta; 1993 Sep; 1144(2):184-90. PubMed ID: 8369336
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of the covalent flavin adenine dinucleotide-binding region in pyranose 2-oxidase from Trametes multicolor.
    Halada P; Leitner C; Sedmera P; Haltrich D; Volc J
    Anal Biochem; 2003 Mar; 314(2):235-42. PubMed ID: 12654310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Substrate specificity of cellobiose dehydrogenase from Phanerochaete chrysosporium.
    Henriksson G; Sild V; Szabó IJ; Pettersson G; Johansson G
    Biochim Biophys Acta; 1998 Mar; 1383(1):48-54. PubMed ID: 9546045
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biosensor based on cellobiose dehydrogenase for detection of catecholamines.
    Stoica L; Lindgren-Sjölander A; Ruzgas T; Gorton L
    Anal Chem; 2004 Aug; 76(16):4690-6. PubMed ID: 15307778
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Release of the FAD domain from cellobiose oxidase by proteases from cellulolytic cultures of Phanerochaete chrysosporium.
    Habu N; Samejima M; Dean JF; Eriksson KE
    FEBS Lett; 1993 Jul; 327(2):161-4. PubMed ID: 8392950
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The heme domain of cellobiose oxidoreductase: a one-electron reducing system.
    Mason MG; Nicholls P; Divne C; Hallberg BM; Henriksson G; Wilson MT
    Biochim Biophys Acta; 2003 Apr; 1604(1):47-54. PubMed ID: 12686420
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of carbohydrate-binding cytochrome b562 from the white-rot fungus Phanerochaete chrysosporium.
    Yoshida M; Igarashi K; Wada M; Kaneko S; Suzuki N; Matsumura H; Nakamura N; Ohno H; Samejima M
    Appl Environ Microbiol; 2005 Aug; 71(8):4548-55. PubMed ID: 16085848
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cellobiose dehydrogenase--a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi.
    Zamocky M; Ludwig R; Peterbauer C; Hallberg BM; Divne C; Nicholls P; Haltrich D
    Curr Protein Pept Sci; 2006 Jun; 7(3):255-80. PubMed ID: 16787264
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct 1H NMR evidence for conversion of beta-D-cellobiose to cellobionolactone by cellobiose dehydrogenase from Phanerochaete chrysosporium.
    Higham CW; Gordon-Smith D; Dempsey CE; Wood PM
    FEBS Lett; 1994 Aug; 351(1):128-32. PubMed ID: 8076681
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellobiose oxidase from Phanerochaete chrysosporium. Stopped-flow spectrophotometric analysis of pH-dependent reduction.
    Samejima M; Phillips RS; Eriksson KE
    FEBS Lett; 1992 Jul; 306(2-3):165-8. PubMed ID: 1321733
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of direct and mediated electron transfer for cellobiose dehydrogenase from Phanerochaete sordida.
    Tasca F; Gorton L; Harreither W; Haltrich D; Ludwig R; Nöll G
    Anal Chem; 2009 Apr; 81(7):2791-8. PubMed ID: 19256522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.