BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 8652626)

  • 21. Quinolinate dehydrogenase and 6-hydroxyquinolinate decarboxylase involved in the conversion of quinolinic acid to 6-hydroxypicolinic acid by Alcaligenes sp. strain UK21.
    Uchida A; Ogawa M; Yoshida T; Nagasawa T
    Arch Microbiol; 2003 Aug; 180(2):81-7. PubMed ID: 12844210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anaerobic C-H Oxyfunctionalization: Coupling of Nitrate Reduction and Quinoline Hydroxylation in Recombinant Pseudomonas putida.
    Ütkür FÖ; Schmid A; Bühler B
    Biotechnol J; 2019 Aug; 14(8):e1800615. PubMed ID: 31144783
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular characterization of a novel ortho-nitrophenol catabolic gene cluster in Alcaligenes sp. strain NyZ215.
    Xiao Y; Zhang JJ; Liu H; Zhou NY
    J Bacteriol; 2007 Sep; 189(18):6587-93. PubMed ID: 17616586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodegradation characteristics of quinoline by Pseudomonas putida.
    Lin Q; Jianlong W
    Bioresour Technol; 2010 Oct; 101(19):7683-6. PubMed ID: 20554200
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 2-oxo-1,2-dihydroquinoline 8-monooxygenase: phylogenetic relationship to other multicomponent nonheme iron oxygenases.
    Rosche B; Tshisuaka B; Hauer B; Lingens F; Fetzner S
    J Bacteriol; 1997 Jun; 179(11):3549-54. PubMed ID: 9171399
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alcaligenes eutrophus JMP134 "2,4-dichlorophenoxyacetate monooxygenase" is an alpha-ketoglutarate-dependent dioxygenase.
    Fukumori F; Hausinger RP
    J Bacteriol; 1993 Apr; 175(7):2083-6. PubMed ID: 8458850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Active site geometry and substrate recognition of the molybdenum hydroxylase quinoline 2-oxidoreductase.
    Bonin I; Martins BM; Purvanov V; Fetzner S; Huber R; Dobbek H
    Structure; 2004 Aug; 12(8):1425-35. PubMed ID: 15296736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Novel Degradation Mechanism for Pyridine Derivatives in Alcaligenes faecalis JQ135.
    Qiu J; Liu B; Zhao L; Zhang Y; Cheng D; Yan X; Jiang J; Hong Q; He J
    Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29802182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characteristics and function of Alcaligenes sp. NBRC 14130 esterase catalysing the stereo-selective hydrolysis of ethyl chrysanthemate.
    Mitsukura K; Shimizu M; Matsushita K; Yoshida T; Nagasawa T
    J Appl Microbiol; 2010 Apr; 108(4):1263-70. PubMed ID: 19778353
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Primary oxidation mechanisms in degradation of aliphatic hydrocarbons by bacterial enzyme systems (author's transl)].
    Hammer KD; Liemann F
    Zentralbl Bakteriol Orig B; 1976 Jul; 162(1-2):169-79. PubMed ID: 998045
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Aniline as a single carbon, nitrogen, and energy source for Alcaligenes faecalis].
    Surovtseva EG; Vol'nova AI
    Mikrobiologiia; 1980; 49(1):49-53. PubMed ID: 7392997
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molybdenum-dependent degradation of quinoline by Pseudomonas putida Chin IK and other aerobic bacteria.
    Blaschke M; Kretzer A; Schäfer C; Nagel M; Andreesen JR
    Arch Microbiol; 1991; 155(2):164-9. PubMed ID: 2059099
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enzymes involved in the aerobic bacterial degradation of N-heteroaromatic compounds: molybdenum hydroxylases and ring-opening 2,4-dioxygenases.
    Fetzner S
    Naturwissenschaften; 2000 Feb; 87(2):59-69. PubMed ID: 10663136
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Purification and characterization of 2,4-dichlorophenoxyacetate/alpha-ketoglutarate dioxygenase.
    Fukumori F; Hausinger RP
    J Biol Chem; 1993 Nov; 268(32):24311-7. PubMed ID: 8226980
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prooxidant action of xanthurenic acid and quinoline compounds: role of transition metals in the generation of reactive oxygen species and enhanced formation of 8-hydroxy-2'-deoxyguanosine in DNA.
    Murakami K; Haneda M; Yoshino M
    Biometals; 2006 Aug; 19(4):429-35. PubMed ID: 16841252
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recombinant toluene-4-monooxygenase: catalytic and Mössbauer studies of the purified diiron and rieske components of a four-protein complex.
    Pikus JD; Studts JM; Achim C; Kauffmann KE; Münck E; Steffan RJ; McClay K; Fox BG
    Biochemistry; 1996 Jul; 35(28):9106-19. PubMed ID: 8703915
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A two component-type cytochrome P-450 monooxygenase system in a prokaryote that catalyzes hydroxylation of ML-236B to pravastatin, a tissue-selective inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase.
    Serizawa N; Matsuoka T
    Biochim Biophys Acta; 1991 Jun; 1084(1):35-40. PubMed ID: 1905157
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regioselective hydroxylation of quinolinic acid, lutidinic acid and isocinchomeronic acid by resting cells of pyridine dicarboxylic acid-degrading microorganisms.
    Uchida A; Yoshida T; Ogawa M; Nagasawa T
    Appl Microbiol Biotechnol; 2003 Sep; 62(4):337-41. PubMed ID: 12955355
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Xenobiotic reductase A in the degradation of quinoline by Pseudomonas putida 86: physiological function, structure and mechanism of 8-hydroxycoumarin reduction.
    Griese JJ; P Jakob R; Schwarzinger S; Dobbek H
    J Mol Biol; 2006 Aug; 361(1):140-52. PubMed ID: 16822524
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbial metabolism of quinoline and related compounds. IV. Degradation of isoquinoline by Alcaligenes faecalis Pa and Pseudomonas diminuta 7.
    Röger P; Erben A; Lingens F
    Biol Chem Hoppe Seyler; 1990 Jun; 371(6):511-3. PubMed ID: 2390217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.