These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 8652627)
1. Regulation of the redox order of four hemes by pH in cytochrome c3 from D. vulgaris Miyazaki F. Park JS; Ohmura T; Kano K; Sagara T; Niki K; Kyogoku Y; Akutsu H Biochim Biophys Acta; 1996 Mar; 1293(1):45-54. PubMed ID: 8652627 [TBL] [Abstract][Full Text] [Related]
2. Estimation of microscopic redox potentials of a tetraheme protein, cytochrome c3 of Desulfovibrio vulgaris, Miyazaki F, and partial assignments of heme groups. Fan KJ; Akutsu H; Kyogoku Y; Niki K Biochemistry; 1990 Mar; 29(9):2257-63. PubMed ID: 2159795 [TBL] [Abstract][Full Text] [Related]
3. Full assignment of heme redox potentials of cytochrome c3 of D. vulgaris Miyazaki F by 1H-NMR. Park JS; Kano K; Niki K; Akutsu H FEBS Lett; 1991 Jul; 285(1):149-51. PubMed ID: 1648512 [TBL] [Abstract][Full Text] [Related]
4. Ionic strength-dependent physicochemical factors in cytochrome c3 regulating the electron transfer rate. Ohmura T; Nakamura H; Niki K; Cusanovich MA; Akutsu H Biophys J; 1998 Sep; 75(3):1483-90. PubMed ID: 9726950 [TBL] [Abstract][Full Text] [Related]
5. 1H NMR studies on ferricytochrome c3 from Desulfovibrio vulgaris Miyazaki F and its interaction with ferredoxin I. Park JS; Kano K; Morimoto Y; Higuchi Y; Yasuoka N; Ogata M; Niki K; Akutsu H J Biomol NMR; 1991 Sep; 1(3):271-82. PubMed ID: 1668723 [TBL] [Abstract][Full Text] [Related]
6. Non-equivalent natures of the coordinated imidazole rings of cytochrome c3 from D. vulgaris Miyazaki F as studied by 1H NMR. Akutsu H; Hirasawa M FEBS Lett; 1992 Aug; 308(3):264-6. PubMed ID: 1324187 [TBL] [Abstract][Full Text] [Related]
7. Reduction kinetics of the four hemes of cytochrome c3 from Desulfovibrio vulgaris by flash photolysis. Akutsu H; Hazzard JH; Bartsch RG; Cusanovich MA Biochim Biophys Acta; 1992 Dec; 1140(2):144-56. PubMed ID: 1332780 [TBL] [Abstract][Full Text] [Related]
8. Redox-coupled conformational alternations in cytochrome c(3) from D. vulgaris Miyazaki F on the basis of its reduced solution structure. Harada E; Fukuoka Y; Ohmura T; Fukunishi A; Kawai G; Fujiwara T; Akutsu H J Mol Biol; 2002 Jun; 319(3):767-78. PubMed ID: 12054869 [TBL] [Abstract][Full Text] [Related]
9. Assignment of the redox potentials to the four haems in Desulfovibrio vulgaris cytochrome c3 by 2D-NMR. Salgueiro CA; Turner DL; Santos H; LeGall J; Xavier AV FEBS Lett; 1992 Dec; 314(2):155-8. PubMed ID: 1333991 [TBL] [Abstract][Full Text] [Related]
10. NMR studies and redox titration of the tetraheme cytochrome c3 from Desulfomicrobium baculatum. Identification of the low-potential heme. Coutinho IB; Turner DL; Legall J; Xavier AV Eur J Biochem; 1995 Jun; 230(3):1007-13. PubMed ID: 7601130 [TBL] [Abstract][Full Text] [Related]
11. Roles of noncoordinated aromatic residues in redox regulation of cytochrome c3 from Desulfovibrio vulgaris Miyazaki F. Takayama Y; Harada E; Kobayashi R; Ozawa K; Akutsu H Biochemistry; 2004 Aug; 43(34):10859-66. PubMed ID: 15323546 [TBL] [Abstract][Full Text] [Related]
12. Redox interaction of cytochrome c3 with [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. Yahata N; Saitoh T; Takayama Y; Ozawa K; Ogata H; Higuchi Y; Akutsu H Biochemistry; 2006 Feb; 45(6):1653-62. PubMed ID: 16460012 [TBL] [Abstract][Full Text] [Related]
13. Effect of hydrogen-bond networks in controlling reduction potentials in Desulfovibrio vulgaris (Hildenborough) cytochrome C3 probed by site-specific mutagenesis. Salgueiro CA; da Costa PN; Turner DL; Messias AC; van Dongen WM; Saraiva LM; Xavier AV Biochemistry; 2001 Aug; 40(32):9709-16. PubMed ID: 11583171 [TBL] [Abstract][Full Text] [Related]
14. Structure analysis of cytochrome c3 from Desulfovibrio vulgaris Hildenborough at 1.9 A resolution. Matias PM; Frazão C; Morais J; Coll M; Carrondo MA J Mol Biol; 1993 Dec; 234(3):680-99. PubMed ID: 8254667 [TBL] [Abstract][Full Text] [Related]
15. Protein conformational changes in tetraheme cytochromes detected by FTIR spectroelectrochemistry: Desulfovibrio desulfuricans Norway 4 and Desulfovibrio gigas cytochromes c3. Schlereth DD; Fernández VM; Mäntele W Biochemistry; 1993 Sep; 32(35):9199-208. PubMed ID: 8396427 [TBL] [Abstract][Full Text] [Related]
16. Simulation of electron-proton coupling with a Monte Carlo method: application to cytochrome c3 using continuum electrostatics. Baptista AM; Martel PJ; Soares CM Biophys J; 1999 Jun; 76(6):2978-98. PubMed ID: 10354425 [TBL] [Abstract][Full Text] [Related]
17. Individual redox characteristics and kinetic properties of the hemes in cytochromes c3: new methods of investigation. Bertrand P; Asso M; Mbarki O; Camensuli P; More C; Guigliarelli B Biochimie; 1994; 76(6):524-36. PubMed ID: 7880891 [TBL] [Abstract][Full Text] [Related]
18. Replacement of lysine 45 by uncharged residues modulates the redox-Bohr effect in tetraheme cytochrome c3 of Desulfovibrio vulgaris (Hildenborough). Saraiva LM; Salgueiro CA; da Costa PN; Messias AC; LeGall J; van Dongen WM; Xavier AV Biochemistry; 1998 Sep; 37(35):12160-5. PubMed ID: 9724528 [TBL] [Abstract][Full Text] [Related]
19. Electron transfer in tetrahemic cytochromes c3: spectroelectrochemical evidence for a conformational change triggered by heme IV reduction. Kazanskaya I; Lexa D; Bruschi M; Chottard G Biochemistry; 1996 Oct; 35(41):13411-8. PubMed ID: 8873609 [TBL] [Abstract][Full Text] [Related]
20. Electric-field-induced redox potential shifts of tetraheme cytochromes c3 immobilized on self-assembled monolayers: surface-enhanced resonance Raman spectroscopy and simulation studies. Rivas L; Soares CM; Baptista AM; Simaan J; Di Paolo RE; Murgida DH; Hildebrandt P Biophys J; 2005 Jun; 88(6):4188-99. PubMed ID: 15764652 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]