These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 8652885)
1. Soot morphology: an application of image analysis in high-resolution transmission electron microscopy. Palotás AB; Rainey LC; Feldermann CJ; Sarofim AF; Vander Sande JB Microsc Res Tech; 1996 Feb; 33(3):266-78. PubMed ID: 8652885 [TBL] [Abstract][Full Text] [Related]
2. Soot structure and reactivity analysis by Raman microspectroscopy, temperature-programmed oxidation, and high-resolution transmission electron microscopy. Knauer M; Schuster ME; Su D; Schlögl R; Niessner R; Ivleva NP J Phys Chem A; 2009 Dec; 113(50):13871-80. PubMed ID: 19899796 [TBL] [Abstract][Full Text] [Related]
3. Carbon nanostructure examined by lattice fringe analysis of high-resolution transmission electron microscopy images. Vander Wal RL; Tomasek AJ; Street K; Hull DR; Thompson WK Appl Spectrosc; 2004 Feb; 58(2):230-7. PubMed ID: 17140483 [TBL] [Abstract][Full Text] [Related]
4. Application of electron microscopy in the observation of technetium and technetium dioxide nanostructures. Silva GW; Poineau F; Ma L; Czerwinski KR Inorg Chem; 2008 Dec; 47(24):11738-44. PubMed ID: 19053332 [TBL] [Abstract][Full Text] [Related]
5. A morphological investigation of soot produced by the detonation of munitions. Pantea D; Brochu S; Thiboutot S; Ampleman G; Scholz G Chemosphere; 2006 Oct; 65(5):821-31. PubMed ID: 16674994 [TBL] [Abstract][Full Text] [Related]
6. Application of the Hough transform for the automatic determination of soot aggregate morphology. Grishin I; Thomson K; Migliorini F; Sloan JJ Appl Opt; 2012 Feb; 51(5):610-20. PubMed ID: 22330294 [TBL] [Abstract][Full Text] [Related]
7. Measurement of crystal thickness and crystal tilt from HRTEM images and a way to correct for their effects. Hovmöller S; Zou X Microsc Res Tech; 1999 Aug; 46(3):147-59. PubMed ID: 10420172 [TBL] [Abstract][Full Text] [Related]
8. Chemical polishing method of GaAs specimens for transmission electron microscopy. Wu YH; Chang L Micron; 2010 Jan; 41(1):20-5. PubMed ID: 19726201 [TBL] [Abstract][Full Text] [Related]
9. Application of the focused ion beam technique in aerosol science: detailed investigation of selected, airborne particles. Kaegi R; Gasser P J Microsc; 2006 Nov; 224(Pt 2):140-5. PubMed ID: 17204060 [TBL] [Abstract][Full Text] [Related]
10. Micro-structural characterization of precipitation-synthesized fluorapatite nano-material by transmission electron microscopy using different sample preparation techniques. Chinthaka Silva GW; Ma L; Hemmers O; Lindle D Micron; 2008; 39(3):269-74. PubMed ID: 17962030 [TBL] [Abstract][Full Text] [Related]
11. Bulk and surface structural investigations of diesel engine soot and carbon black. Müller JO; Su DS; Wild U; Schlögl R Phys Chem Chem Phys; 2007 Aug; 9(30):4018-25. PubMed ID: 17646891 [TBL] [Abstract][Full Text] [Related]
12. IMAGE-WARP: a real-space restoration method for high-resolution STEM images using quantitative HRTEM analysis. Recnik A; Möbus G; Sturm S Ultramicroscopy; 2005 Jul; 103(4):285-301. PubMed ID: 15885433 [TBL] [Abstract][Full Text] [Related]
13. Identification and classification of human cytomegalovirus capsids in textured electron micrographs using deformed template matching. Ryner M; Strömberg JO; Söderberg-Nauclér C; Homman-Loudiyi M Virol J; 2006 Aug; 3():57. PubMed ID: 16919163 [TBL] [Abstract][Full Text] [Related]
14. Chemical component mapping of pulverized toner by scanning transmission X-ray microscopy. Iwata N; Tani K; Watada A; Ikeura-Sekiguchi H; Araki T; Hitchcock AP Micron; 2006; 37(4):290-5. PubMed ID: 16182544 [TBL] [Abstract][Full Text] [Related]
15. AFM capabilities in characterization of particles and surfaces: from angstroms to microns. Starostina N; Brodsky M; Prikhodko S; Hoo CM; Mecartney ML; West P J Cosmet Sci; 2008; 59(3):225-32. PubMed ID: 18528590 [TBL] [Abstract][Full Text] [Related]
16. Mathematical form factor studies on the effect of water on airborne particles morphology using a bi-dimensional TEM image processing. Cucchiella R; Falini G; Ferri M; Stracquadanio M; Trombini C J Environ Monit; 2009 Jan; 11(1):181-6. PubMed ID: 19137155 [TBL] [Abstract][Full Text] [Related]
17. Comparing electron tomography and HRTEM slicing methods as tools to measure the thickness of nanoparticles. Alloyeau D; Ricolleau C; Oikawa T; Langlois C; Le Bouar Y; Loiseau A Ultramicroscopy; 2009 Jun; 109(7):788-96. PubMed ID: 19327891 [TBL] [Abstract][Full Text] [Related]
18. In situ transmission electron microscopy observations of individually selected freestanding carbon nanotubes during field emission. Kaiser M; Doytcheva M; Verheijen M; de Jonge N Ultramicroscopy; 2006; 106(10):902-8. PubMed ID: 16737778 [TBL] [Abstract][Full Text] [Related]
19. Technique for preparation and characterization in cross-section of oral titanium implant surfaces using focused ion beam and transmission electron microscopy. Jarmar T; Palmquist A; Brånemark R; Hermansson L; Engqvist H; Thomsen P J Biomed Mater Res A; 2008 Dec; 87(4):1003-9. PubMed ID: 18257067 [TBL] [Abstract][Full Text] [Related]
20. Structure analysis of defects in nanometer space inside a crystal: creation and agglomeration of point defects in Si and Ge revealed by high-resolution electron microscopy. Takeda S Microsc Res Tech; 1998 Feb; 40(4):313-35. PubMed ID: 9523763 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]