These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 8653181)

  • 1. External laryngeal frame function in voice production revisited: a review.
    Vilkman E; Sonninen A; Hurme P; Körkkö P
    J Voice; 1996 Mar; 10(1):78-92. PubMed ID: 8653181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Function of the laryngeal muscles in the control of the fundamental frequency of voice].
    Ayache S; Fernandes M; Ouaknine M; Giovanni A
    Ann Otolaryngol Chir Cervicofac; 2002 Sep; 119(4):243-51. PubMed ID: 12410121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Function of the posterior cricoarytenoid muscle in phonation: in vivo laryngeal model.
    Choi HS; Berke GS; Ye M; Kreiman J
    Otolaryngol Head Neck Surg; 1993 Dec; 109(6):1043-51. PubMed ID: 8265188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the external laryngeal muscles in length-adjustment of the vocal cords in singing; phoniatric, roentgenologic and experimental studies of the mechanism of pitch change in the voice with special reference to the function of the sternothyroid.
    SONNINEN AA
    Acta Otolaryngol Suppl; 1956; 130():1-102. PubMed ID: 13381445
    [No Abstract]   [Full Text] [Related]  

  • 5. Human Speech: A Restricted Use of the Mammalian Larynx.
    Titze IR
    J Voice; 2017 Mar; 31(2):135-141. PubMed ID: 27397113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional electrical stimulation of laryngeal adductor muscle restores mobility of vocal fold and improves voice sounds in cats with unilateral laryngeal paralysis.
    Katada A; Nonaka S; Adachi M; Kunibe I; Arakawa T; Imada M; Hayashi T; Zealear DL; Harabuchi Y
    Neurosci Res; 2004 Oct; 50(2):153-9. PubMed ID: 15380322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional posture changes of the vocal fold from paired intrinsic laryngeal muscles.
    Vahabzadeh-Hagh AM; Zhang Z; Chhetri DK
    Laryngoscope; 2017 Mar; 127(3):656-664. PubMed ID: 27377032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive measurement of traveling wave velocity in the canine larynx.
    Nasri S; Sercarz JA; Berke GS
    Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):758-66. PubMed ID: 7944166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The role of laryngeal kinesthetic feedback in the control of pitch in speech production].
    Duflo S; Ouaknine M; Ghio A; Giovanni A
    Rev Laryngol Otol Rhinol (Bord); 2007; 128(5):297-303. PubMed ID: 20387375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of strap muscles in phonation--in vivo canine laryngeal model.
    Hong KH; Ye M; Kim YM; Kevorkian KF; Berke GS
    J Voice; 1997 Mar; 11(1):23-32. PubMed ID: 9075173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory and laryngeal function during spontaneous speaking in teachers with voice disorders.
    Lowell SY; Barkmeier-Kraemer JM; Hoit JD; Story BH
    J Speech Lang Hear Res; 2008 Apr; 51(2):333-49. PubMed ID: 18367681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of certain extrinsic laryngeal muscles on artificial voice production.
    Ueda N; Oyama M; Harvey JE; Ogura JH
    Laryngoscope; 1972 Mar; 82(3):468-82. PubMed ID: 5021030
    [No Abstract]   [Full Text] [Related]  

  • 13. Long-term model of induced canine phonation.
    Paniello RC; Dahm JD
    Otolaryngol Head Neck Surg; 1998 Apr; 118(4):512-22. PubMed ID: 9560104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of subglottic pressure on fundamental frequency of the canine larynx with active muscle tensions.
    Hsiao TY; Solomon NP; Luschei ES; Titze IR; Liu K; Fu TC; Hsu MM
    Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):817-21. PubMed ID: 7944175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laryngeal biomechanics in Middle Eastern singing.
    Hamdan AL; Sibai A; Moukarbel RV; Deeb R
    J Voice; 2006 Dec; 20(4):579-84. PubMed ID: 16360303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantitative model of voice F0 control.
    Farley GR
    J Acoust Soc Am; 1994 Feb; 95(2):1017-29. PubMed ID: 8132896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic MRI of larynx and vocal fold vibrations in normal phonation.
    Ahmad M; Dargaud J; Morin A; Cotton F
    J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ELECTROMYOGRAPHY OF EXTRINSIC LARYNGEAL MUSCLES DURING PHONATION OF DIFFERENT VOWELS.
    FAABORG-ANDERSEN K; VENNARD W
    Ann Otol Rhinol Laryngol; 1964 Mar; 73():248-54. PubMed ID: 14128713
    [No Abstract]   [Full Text] [Related]  

  • 19. Anatomy and physiology of the larynx.
    Noordzij JP; Ossoff RH
    Otolaryngol Clin North Am; 2006 Feb; 39(1):1-10. PubMed ID: 16469651
    [No Abstract]   [Full Text] [Related]  

  • 20. Action potentials from internal laryngeal muscles during phonation.
    FAABORG-ANDERSEN K; BUCHTHAL F
    Nature; 1956 Feb; 177(4503):340-1. PubMed ID: 13297038
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.